Degradation of TNP, RDX, and CL-20 Explosives by Microbes

  • Baljinder Singh
  • Jagdeep Kaur
  • Kashmir SinghEmail author
Part of the Environmental Science and Engineering book series (ESE)


Life on the planet earth is supported by the continuous cycling of elements. Due to massive mobilization of natural resources and industrial synthesis of chemicals, a number of environmental problems have arisen as a consequence of incorporation of the synthesized molecules into ongoing biological cycles. The quality of life on earth is linked inextricably to the overall quality of environment.


Nitro Group High Explosive Nitroaromatic Compound Pentaerythritol Tetranitrate Nitro Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. ACGIH (1984) Picric acid. Documentation of the threshold limit values. In: American conference of governmental industrial hygienists, Cincinnati, OHGoogle Scholar
  2. Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340CrossRefGoogle Scholar
  3. Agency for Toxic Substances and Disease Registry (1995). Toxicological profile for RDX. Department of Health and Human Services, Public Health Service, Atlanta, GA, U.SGoogle Scholar
  4. Aguirre A, Sanz de Galdeano C, Oleaga JM, Eizaguirre X, Diaz Perez JL (1993) Allergic contact dermatitis from picric acid. Contact Dermatitis 28:291CrossRefGoogle Scholar
  5. Bannon DI, Dillman JF, Hable MA, Phillips CS, Perkins EJ (2009) Global gene expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Chem Res Toxicol 22(4):620–625CrossRefGoogle Scholar
  6. Behrend C, Heesche-Wagner K (1999) Formation of hydride Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65:1372–1377Google Scholar
  7. Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005CrossRefGoogle Scholar
  8. Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108CrossRefGoogle Scholar
  9. Bhushan B, Paquet L, Spain JC, Hawari J (2003a) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Appl Environ Microbiol 69:5216–5221CrossRefGoogle Scholar
  10. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003b) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351CrossRefGoogle Scholar
  11. Bhushan B, Halasz A, Hawari J (2004a) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Commun 322:271–276CrossRefGoogle Scholar
  12. Bhushan B, Halasz A, Spain JC, Hawari J (2004b) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70:4040–4047CrossRefGoogle Scholar
  13. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821CrossRefGoogle Scholar
  14. Bhushan B, Halasz A, Hawari J (2005a) Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol 69:448–455CrossRefGoogle Scholar
  15. Bhushan B, Halasz A, Hawari J (2005b) Stereo-specificity for pro-® hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Biochem Biophys Res Commun 337:1080–1083CrossRefGoogle Scholar
  16. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322Google Scholar
  17. Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmidborne and involves a cytochrome p-450. J Appl Microbiol 93:463–472CrossRefGoogle Scholar
  18. Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34:2208–2216CrossRefGoogle Scholar
  19. Davis TL (1972) The chemistry of powder and explosives. Angriff Press, Las VegasGoogle Scholar
  20. Dodard S, Sunahara GI, Sarrazin M, Gong P, Kuperman RG, Ampleman G, Thiboutot S, Hawari J (2005) Survival and reproduction of enchytraeid worms (Oligochaeta) in different soil types amended with cyclic nitramine explosives. Environ Toxicol Chem 24:2579–2587CrossRefGoogle Scholar
  21. Ebert S, Fischer P, Knackmuss HJ (2002) Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 12:367–376CrossRefGoogle Scholar
  22. Ebert S, Rieger PG, Knackmuss HJ (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol 181:2669–2674Google Scholar
  23. Erikson D (1941) Studies on some lake-mud strains of Micromonospora. J Bacteriol 41:277–300Google Scholar
  24. Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  25. Farukawa K (2003) Super bugs for Bioremediation. Trends Biotechnol 21:187–190CrossRefGoogle Scholar
  26. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172CrossRefGoogle Scholar
  27. Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi. Chemosphere 63:175–181CrossRefGoogle Scholar
  28. Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84(3):535–544CrossRefGoogle Scholar
  29. Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, Wilbanks M, Perkins E (2011) Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. Ecotoxicology 20(3):580–594CrossRefGoogle Scholar
  30. Gazdaru V, Mihis B, Ionescu M (1996) Fungal degradation of phenolic compounds. Sci Technol Environ Protection 3:41–45Google Scholar
  31. Goodfellow WL Jr, Burton DT, Graves WC, Hall JLW, Cooper KR (2007) Acute toxicity of picric acid and picramic acid to Rainbow trout, Salmo gairdneri and American oyster, Crassostrea virginica. J Am Water Res Assoc 19:641–648CrossRefGoogle Scholar
  32. Gundersen K, Jensen HJ (1956) A soil bacterium decomposing organic nitro-compounds. Acta Agric Scand 6:100–114CrossRefGoogle Scholar
  33. Gust KA, Pirooznia M, Quinn MJ Jr, Johnson MS, Escalon L, Indest KJ, Guan X, Clarke J, Deng Y, Gong P, Perkins EJ (2009) Neurootoxicogenomic investigations to assess mechanisms of action of the munitions constituents RDX and 2,6-DNT in Northern Bobwhite (Colinus virginianus). Toxicol Sci 110(1):168–180CrossRefGoogle Scholar
  34. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75CrossRefGoogle Scholar
  35. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000) Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro- 1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657CrossRefGoogle Scholar
  36. Heiss G, Hofmann KW, Trachtmann N, Walters DM, Rouviere P, Knackmuss HJ (2002) npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology 148:799–806Google Scholar
  37. Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287CrossRefGoogle Scholar
  38. Hofmann KW, Knackmuss HJ, Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-Trinitrophenol (Picric Acid) degradation. Appl Environ Microbiol 70(5):2854–2860CrossRefGoogle Scholar
  39. Jenkins TF, Pennington JC, Ranney TA, Berry TE, Miyares PH, Walsh ME, Hewitt AD, Perron NM, Parker LV, Hayes CA (2001) In characterization of explosives contamination at military firing ranges. ERDC TR-01-5. Final/technical report. Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, NHGoogle Scholar
  40. Johnson MS, Quinn MJ Jr, Bazar MA, Gust KA, Escalon BL, Perkins EJ (2007) Subacute toxicity of oral 2,6-dinitrotoluene and 1,3,5- trinitro-1,3,5-triazine (RDX) exposure to the Northern Bobwhite (Colinus virginianus). Environ Toxicol Chem 26:1481–1487CrossRefGoogle Scholar
  41. Jung CM, Crocker FH, Eberly JO, Indest KJ (2011) Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 110:1449–1459CrossRefGoogle Scholar
  42. Karakaya P, Christodoulatos C, Koutsospyros A, Balas W, Nicolich S, Sidhoum M (2009) Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20). Int J Environ Res Public Health 6:1371–1392CrossRefGoogle Scholar
  43. Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4611Google Scholar
  44. Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA (2006) Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere 62:1282–1293CrossRefGoogle Scholar
  45. Kwon MJ, Finneran KT (2006) Microbially mediated biodegradation of hexahydro-1,3,5-Trinitro-1,3,5-Triazine by extracellular electron shuttling compounds. Appl Environ Microbiol 72(9):5933–5941CrossRefGoogle Scholar
  46. Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca Raton, pp 91–126Google Scholar
  47. Lenke H, Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24–2. Appl Environ Microbiol 58(9):2933–2937Google Scholar
  48. Lenke H, Knackmuss HJ (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenol. Appl Environ Microbiol 62(3):784–790Google Scholar
  49. Lotufo GR, Gibson AB, Yoo JL (2010) Toxicity and bioconcentration evaluation of RDX and HMX using sheepshead minnows in water exposures. Ecotoxicol Environ Saf 73(7):1653–1657CrossRefGoogle Scholar
  50. Meisenheimer J (1902) Uber Reaktionen aromatischer Nitrokorper. Ann Chem 323:205–246CrossRefGoogle Scholar
  51. Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, MacMillan DK (2005) Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX). J Appl Toxicol 25:427–434CrossRefGoogle Scholar
  52. Monteil-Rivera F, Halasz A, Manno D, Kuperman RG, Thiboutot S, Ampleman G, Hawari J (2009) Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation. Environ Pollut 157(1):77–85CrossRefGoogle Scholar
  53. Panikov NS, Sizova MV, Ros D, Cristodoulatos C, Balas W, Nicolich S (2007) Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures. Biodegradation 18:317–332CrossRefGoogle Scholar
  54. Parker GZ, Reddy G (2006) Reevaluation of a twenty-four-month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the B6C3F1 hybrid mouse. Inter J Toxicol 25(5):373–378CrossRefGoogle Scholar
  55. Pieper DH, Reinke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefGoogle Scholar
  56. Quinn MJ Jr, Bazar MA, McFarland CA, Perkins EJ, Gust KA, Johnson MS (2009) Sublethal effects of subacute exposure to RDX (1,3,5-trinitro-1,3,5-triazine) in the Northern Bobwhite, Colinus virginianus. Environ Toxicol Chem 27:1Google Scholar
  57. Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach AL, Rehm S, Ehringer M, Pace NR (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol 16:319–324CrossRefGoogle Scholar
  58. Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, NY, pp 1–18CrossRefGoogle Scholar
  59. Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195Google Scholar
  60. Ringelberg DB, Reynolds CM, Walsh ME, Jenkins TF (2003) RDX loss in a surface soil under saturated and well drained conditions. J Environ Qual 32:1244–1249CrossRefGoogle Scholar
  61. Robertson BK, Alexander M (1992) Influence of calcium iron and pH on phosphate availability for microbial mineralization of organic chemicals. Appl Environ Microbiol 58:38–41Google Scholar
  62. Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Leduc F, Dodard S, Martel M, Gong P, Hawari J (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23:1026–1034CrossRefGoogle Scholar
  63. Roh H, Yu CP, Fuller ME, Chu KH (2009) Identification of hexahydro- 1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15Nstable isotope probing. Environ Sci Technol 43:2505–2511CrossRefGoogle Scholar
  64. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome p450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219CrossRefGoogle Scholar
  65. Schaefer CE, Fuller ME, Condee CW, Lowey JM, Hatzinger PB (2007) Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater [electronic resource]. J Contam Hydrol 89(3–4):231–250CrossRefGoogle Scholar
  66. Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552CrossRefGoogle Scholar
  67. Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771CrossRefGoogle Scholar
  68. Severin T, Loske J, Scheel D (1969) Umsetzung von Nitroaromaten mit Natriumborhydrid, V. Chem Ber 102:3909–3914CrossRefGoogle Scholar
  69. Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009) Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Hazard Mat 163:1199–1206CrossRefGoogle Scholar
  70. Sickler RA (1992) Explosive principles: an essential guide understanding explosives and detonations. Paladin Press, Boulder, ColoradoGoogle Scholar
  71. Singh B, Kaur J, Singh K (2011) 2,4,6 trinitrophenol degradation by Bacillus species isolated from firing range. Biotechnol Lett. doi: 10.1007/s10529-011-0726-1 Google Scholar
  72. Singh B, Kaur J, Singh K (2012) Microbial remediation of explosives waste. Crit Rev Microbiol 38(2):152–167CrossRefGoogle Scholar
  73. Spain JC (2000) Biodegradation of nitroaromatic compounds and explosives: introduction. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, New York, NY, pp 1–6Google Scholar
  74. Steuckart C, Berger-Prelss E, Levsen K (1994) Determination of explosives and their biodegradation products in contaminated soil and water from former ammunition plants by automated multiple development high-performance thin-layer chromatography. Anal Chem 66(15):2570–2577CrossRefGoogle Scholar
  75. Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-Hex- aazaisowurtzitane (CL-20) degradability in soil. Environ Pollu 139:353–361CrossRefGoogle Scholar
  76. Sunahara GI, Guilherme L, Hawari J, Kuperman RG (2009) Ecotoxicology of explosives. CRC Press, Boca Raton, FLGoogle Scholar
  77. Sunderman FW, Weidman FD, Batson OV (1945) Studies of the effects of ammonium picrate on man and certain experimental animals. J Ind Hyg Toxicol 27:241–248Google Scholar
  78. Swartz L (1944) Dermatitis from explosives. J Am Med Assoc 125:186–190CrossRefGoogle Scholar
  79. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Product Rep 23:845–850CrossRefGoogle Scholar
  80. Tabak HH, Chambers CW, Kabler PW (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J Bacteriol 87:910–919Google Scholar
  81. Takahashi M, Ogata H, Izumi H, Yamashita K, Takechi M, Hirata-Koizumi M, Kamata E, Hasegawa R, Ema M (2004) Comparative toxicity study of 2,4,6-trinitrophenol (picric acid) in newborn and young rats. Congenit Anom (Kyoto) 44:204–214CrossRefGoogle Scholar
  82. Takeo M, Abe Y, Negoro S, Heiss G (2003) Simultaneous degradation of 4-nitrophenol and picric acid by two different mechanisms of Rhodococcus sp. PN1. J Chemical Eng Japan 36:1178–1184CrossRefGoogle Scholar
  83. Talmage SC, Opresko DM, Maxwell CJ, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: Environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156CrossRefGoogle Scholar
  84. Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5- triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272CrossRefGoogle Scholar
  85. Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive, CL-20. Appl Environ Microbiol 69:1871–1874CrossRefGoogle Scholar
  86. USEPA (2009) U.S. environmental protection agency. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Environmental Protection Agency, Washington, DCGoogle Scholar
  87. Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro- 1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro- 1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517CrossRefGoogle Scholar
  88. Vorbeck C, Lenke H, Fischer P, Knackmuss HJ (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934Google Scholar
  89. Wildman MJ, Alvarez PJJ (2001) RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Sci Technol 43(2):25–33Google Scholar
  90. Wyman JF, Serve MP, Hobson DW, Lee LH, Uddin D (1992) Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J Toxicol Environ Health 37:313–327CrossRefGoogle Scholar
  91. Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50(2):91–96CrossRefGoogle Scholar
  92. Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5- triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341CrossRefGoogle Scholar
  93. Zhao JS, Manno D, Hawari J (2008) Regulation of hexahydro-1,3,5-trinitro 1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154:1026–1037CrossRefGoogle Scholar
  94. Zhao JS, Paquet L, Halasz A, Hawari J (2003) Metabolism of hexahydro-1,3,5-trinitro 1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed bydenitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193CrossRefGoogle Scholar
  95. Zhao JS, Paquet L, Halasz A, Manno D, Hawari J (2004b) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Punjab Pollution Control BoardPatialaIndia
  2. 2.Department of BiotechnologyPanjab UniversityChandigarhIndia

Personalised recommendations