Skip to main content

Degradation of TNP, RDX, and CL-20 Explosives by Microbes

  • Chapter
  • First Online:
Biological Remediation of Explosive Residues

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Life on the planet earth is supported by the continuous cycling of elements. Due to massive mobilization of natural resources and industrial synthesis of chemicals, a number of environmental problems have arisen as a consequence of incorporation of the synthesized molecules into ongoing biological cycles. The quality of life on earth is linked inextricably to the overall quality of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACGIH (1984) Picric acid. Documentation of the threshold limit values. In: American conference of governmental industrial hygienists, Cincinnati, OH

    Google Scholar 

  • Adrian NR, Arnett CM (2004) Anaerobic biodegradation of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol 48:332–340

    Article  Google Scholar 

  • Agency for Toxic Substances and Disease Registry (1995). Toxicological profile for RDX. Department of Health and Human Services, Public Health Service, Atlanta, GA, U.S

    Google Scholar 

  • Aguirre A, Sanz de Galdeano C, Oleaga JM, Eizaguirre X, Diaz Perez JL (1993) Allergic contact dermatitis from picric acid. Contact Dermatitis 28:291

    Article  Google Scholar 

  • Bannon DI, Dillman JF, Hable MA, Phillips CS, Perkins EJ (2009) Global gene expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Chem Res Toxicol 22(4):620–625

    Article  Google Scholar 

  • Behrend C, Heesche-Wagner K (1999) Formation of hydride Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22–2. Appl Environ Microbiol 65:1372–1377

    Google Scholar 

  • Bernstein A, Adar E, Nejidat A, Ronen Z (2011) Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation 22:997–1005

    Article  Google Scholar 

  • Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108

    Article  Google Scholar 

  • Bhushan B, Paquet L, Spain JC, Hawari J (2003a) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Appl Environ Microbiol 69:5216–5221

    Article  Google Scholar 

  • Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003b) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol 69:1347–1351

    Article  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2004a) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Commun 322:271–276

    Article  Google Scholar 

  • Bhushan B, Halasz A, Spain JC, Hawari J (2004b) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70:4040–4047

    Article  Google Scholar 

  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821

    Article  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2005a) Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol 69:448–455

    Article  Google Scholar 

  • Bhushan B, Halasz A, Hawari J (2005b) Stereo-specificity for pro-® hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Biochem Biophys Res Commun 337:1080–1083

    Article  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    Google Scholar 

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmidborne and involves a cytochrome p-450. J Appl Microbiol 93:463–472

    Article  Google Scholar 

  • Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34:2208–2216

    Article  Google Scholar 

  • Davis TL (1972) The chemistry of powder and explosives. Angriff Press, Las Vegas

    Google Scholar 

  • Dodard S, Sunahara GI, Sarrazin M, Gong P, Kuperman RG, Ampleman G, Thiboutot S, Hawari J (2005) Survival and reproduction of enchytraeid worms (Oligochaeta) in different soil types amended with cyclic nitramine explosives. Environ Toxicol Chem 24:2579–2587

    Article  Google Scholar 

  • Ebert S, Fischer P, Knackmuss HJ (2002) Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 12:367–376

    Article  Google Scholar 

  • Ebert S, Rieger PG, Knackmuss HJ (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol 181:2669–2674

    Google Scholar 

  • Erikson D (1941) Studies on some lake-mud strains of Micromonospora. J Bacteriol 41:277–300

    Google Scholar 

  • Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  Google Scholar 

  • Farukawa K (2003) Super bugs for Bioremediation. Trends Biotechnol 21:187–190

    Article  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    Article  Google Scholar 

  • Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white-rot fungi. Chemosphere 63:175–181

    Article  Google Scholar 

  • Fuller ME, McClay K, Hawari J, Paquet L, Malone TE, Fox BG, Steffan RJ (2009) Transformation of RDX and other energetic compounds by xenobiotic reductases XenA and XenB. Appl Microbiol Biotechnol 84(3):535–544

    Article  Google Scholar 

  • Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, Wilbanks M, Perkins E (2011) Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. Ecotoxicology 20(3):580–594

    Article  Google Scholar 

  • Gazdaru V, Mihis B, Ionescu M (1996) Fungal degradation of phenolic compounds. Sci Technol Environ Protection 3:41–45

    Google Scholar 

  • Goodfellow WL Jr, Burton DT, Graves WC, Hall JLW, Cooper KR (2007) Acute toxicity of picric acid and picramic acid to Rainbow trout, Salmo gairdneri and American oyster, Crassostrea virginica. J Am Water Res Assoc 19:641–648

    Article  Google Scholar 

  • Gundersen K, Jensen HJ (1956) A soil bacterium decomposing organic nitro-compounds. Acta Agric Scand 6:100–114

    Article  Google Scholar 

  • Gust KA, Pirooznia M, Quinn MJ Jr, Johnson MS, Escalon L, Indest KJ, Guan X, Clarke J, Deng Y, Gong P, Perkins EJ (2009) Neurootoxicogenomic investigations to assess mechanisms of action of the munitions constituents RDX and 2,6-DNT in Northern Bobwhite (Colinus virginianus). Toxicol Sci 110(1):168–180

    Article  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75

    Article  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000) Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro- 1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    Article  Google Scholar 

  • Heiss G, Hofmann KW, Trachtmann N, Walters DM, Rouviere P, Knackmuss HJ (2002) npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology 148:799–806

    Google Scholar 

  • Heiss G, Knackmuss HJ (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287

    Article  Google Scholar 

  • Hofmann KW, Knackmuss HJ, Heiss G (2004) Nitrite elimination and hydrolytic ring cleavage in 2,4,6-Trinitrophenol (Picric Acid) degradation. Appl Environ Microbiol 70(5):2854–2860

    Article  Google Scholar 

  • Jenkins TF, Pennington JC, Ranney TA, Berry TE, Miyares PH, Walsh ME, Hewitt AD, Perron NM, Parker LV, Hayes CA (2001) In characterization of explosives contamination at military firing ranges. ERDC TR-01-5. Final/technical report. Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, NH

    Google Scholar 

  • Johnson MS, Quinn MJ Jr, Bazar MA, Gust KA, Escalon BL, Perkins EJ (2007) Subacute toxicity of oral 2,6-dinitrotoluene and 1,3,5- trinitro-1,3,5-triazine (RDX) exposure to the Northern Bobwhite (Colinus virginianus). Environ Toxicol Chem 26:1481–1487

    Article  Google Scholar 

  • Jung CM, Crocker FH, Eberly JO, Indest KJ (2011) Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 110:1449–1459

    Article  Google Scholar 

  • Karakaya P, Christodoulatos C, Koutsospyros A, Balas W, Nicolich S, Sidhoum M (2009) Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20). Int J Environ Res Public Health 6:1371–1392

    Article  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60:4608–4611

    Google Scholar 

  • Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA (2006) Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere 62:1282–1293

    Article  Google Scholar 

  • Kwon MJ, Finneran KT (2006) Microbially mediated biodegradation of hexahydro-1,3,5-Trinitro-1,3,5-Triazine by extracellular electron shuttling compounds. Appl Environ Microbiol 72(9):5933–5941

    Article  Google Scholar 

  • Lenke H, Achtnich C, Knackmuss HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca Raton, pp 91–126

    Google Scholar 

  • Lenke H, Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24–2. Appl Environ Microbiol 58(9):2933–2937

    Google Scholar 

  • Lenke H, Knackmuss HJ (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenol. Appl Environ Microbiol 62(3):784–790

    Google Scholar 

  • Lotufo GR, Gibson AB, Yoo JL (2010) Toxicity and bioconcentration evaluation of RDX and HMX using sheepshead minnows in water exposures. Ecotoxicol Environ Saf 73(7):1653–1657

    Article  Google Scholar 

  • Meisenheimer J (1902) Uber Reaktionen aromatischer Nitrokorper. Ann Chem 323:205–246

    Article  Google Scholar 

  • Meyer SA, Marchand AJ, Hight JL, Roberts GH, Escalon LB, Inouye LS, MacMillan DK (2005) Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro- 1,3,5-trinitro-1,3,5-triazine (RDX). J Appl Toxicol 25:427–434

    Article  Google Scholar 

  • Monteil-Rivera F, Halasz A, Manno D, Kuperman RG, Thiboutot S, Ampleman G, Hawari J (2009) Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation. Environ Pollut 157(1):77–85

    Article  Google Scholar 

  • Panikov NS, Sizova MV, Ros D, Cristodoulatos C, Balas W, Nicolich S (2007) Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures. Biodegradation 18:317–332

    Article  Google Scholar 

  • Parker GZ, Reddy G (2006) Reevaluation of a twenty-four-month chronic toxicity/carcinogenicity study of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the B6C3F1 hybrid mouse. Inter J Toxicol 25(5):373–378

    Article  Google Scholar 

  • Pieper DH, Reinke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  Google Scholar 

  • Quinn MJ Jr, Bazar MA, McFarland CA, Perkins EJ, Gust KA, Johnson MS (2009) Sublethal effects of subacute exposure to RDX (1,3,5-trinitro-1,3,5-triazine) in the Northern Bobwhite, Colinus virginianus. Environ Toxicol Chem 27:1

    Google Scholar 

  • Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach AL, Rehm S, Ehringer M, Pace NR (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol 16:319–324

    Article  Google Scholar 

  • Rieger PG, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, NY, pp 1–18

    Chapter  Google Scholar 

  • Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ (1999) Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195

    Google Scholar 

  • Ringelberg DB, Reynolds CM, Walsh ME, Jenkins TF (2003) RDX loss in a surface soil under saturated and well drained conditions. J Environ Qual 32:1244–1249

    Article  Google Scholar 

  • Robertson BK, Alexander M (1992) Influence of calcium iron and pH on phosphate availability for microbial mineralization of organic chemicals. Appl Environ Microbiol 58:38–41

    Google Scholar 

  • Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Leduc F, Dodard S, Martel M, Gong P, Hawari J (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23:1026–1034

    Article  Google Scholar 

  • Roh H, Yu CP, Fuller ME, Chu KH (2009) Identification of hexahydro- 1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15Nstable isotope probing. Environ Sci Technol 43:2505–2511

    Article  Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome p450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  Google Scholar 

  • Schaefer CE, Fuller ME, Condee CW, Lowey JM, Hatzinger PB (2007) Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater [electronic resource]. J Contam Hydrol 89(3–4):231–250

    Article  Google Scholar 

  • Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74:4550–4552

    Article  Google Scholar 

  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    Article  Google Scholar 

  • Severin T, Loske J, Scheel D (1969) Umsetzung von Nitroaromaten mit Natriumborhydrid, V. Chem Ber 102:3909–3914

    Article  Google Scholar 

  • Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R (2009) Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Hazard Mat 163:1199–1206

    Article  Google Scholar 

  • Sickler RA (1992) Explosive principles: an essential guide understanding explosives and detonations. Paladin Press, Boulder, Colorado

    Google Scholar 

  • Singh B, Kaur J, Singh K (2011) 2,4,6 trinitrophenol degradation by Bacillus species isolated from firing range. Biotechnol Lett. doi:10.1007/s10529-011-0726-1

    Google Scholar 

  • Singh B, Kaur J, Singh K (2012) Microbial remediation of explosives waste. Crit Rev Microbiol 38(2):152–167

    Article  Google Scholar 

  • Spain JC (2000) Biodegradation of nitroaromatic compounds and explosives: introduction. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, New York, NY, pp 1–6

    Google Scholar 

  • Steuckart C, Berger-Prelss E, Levsen K (1994) Determination of explosives and their biodegradation products in contaminated soil and water from former ammunition plants by automated multiple development high-performance thin-layer chromatography. Anal Chem 66(15):2570–2577

    Article  Google Scholar 

  • Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-Hex- aazaisowurtzitane (CL-20) degradability in soil. Environ Pollu 139:353–361

    Article  Google Scholar 

  • Sunahara GI, Guilherme L, Hawari J, Kuperman RG (2009) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  • Sunderman FW, Weidman FD, Batson OV (1945) Studies of the effects of ammonium picrate on man and certain experimental animals. J Ind Hyg Toxicol 27:241–248

    Google Scholar 

  • Swartz L (1944) Dermatitis from explosives. J Am Med Assoc 125:186–190

    Article  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Product Rep 23:845–850

    Article  Google Scholar 

  • Tabak HH, Chambers CW, Kabler PW (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J Bacteriol 87:910–919

    Google Scholar 

  • Takahashi M, Ogata H, Izumi H, Yamashita K, Takechi M, Hirata-Koizumi M, Kamata E, Hasegawa R, Ema M (2004) Comparative toxicity study of 2,4,6-trinitrophenol (picric acid) in newborn and young rats. Congenit Anom (Kyoto) 44:204–214

    Article  Google Scholar 

  • Takeo M, Abe Y, Negoro S, Heiss G (2003) Simultaneous degradation of 4-nitrophenol and picric acid by two different mechanisms of Rhodococcus sp. PN1. J Chemical Eng Japan 36:1178–1184

    Article  Google Scholar 

  • Talmage SC, Opresko DM, Maxwell CJ, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: Environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    Article  Google Scholar 

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5- triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272

    Article  Google Scholar 

  • Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive, CL-20. Appl Environ Microbiol 69:1871–1874

    Article  Google Scholar 

  • USEPA (2009) U.S. environmental protection agency. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro- 1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro- 1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517

    Article  Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Knackmuss HJ (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934

    Google Scholar 

  • Wildman MJ, Alvarez PJJ (2001) RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Sci Technol 43(2):25–33

    Google Scholar 

  • Wyman JF, Serve MP, Hobson DW, Lee LH, Uddin D (1992) Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J Toxicol Environ Health 37:313–327

    Article  Google Scholar 

  • Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50(2):91–96

    Article  Google Scholar 

  • Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5- triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341

    Article  Google Scholar 

  • Zhao JS, Manno D, Hawari J (2008) Regulation of hexahydro-1,3,5-trinitro 1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome. Microbiology 154:1026–1037

    Article  Google Scholar 

  • Zhao JS, Paquet L, Halasz A, Hawari J (2003) Metabolism of hexahydro-1,3,5-trinitro 1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed bydenitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193

    Article  Google Scholar 

  • Zhao JS, Paquet L, Halasz A, Manno D, Hawari J (2004b) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashmir Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, B., Kaur, J., Singh, K. (2014). Degradation of TNP, RDX, and CL-20 Explosives by Microbes. In: Singh, S. (eds) Biological Remediation of Explosive Residues. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01083-0_5

Download citation

Publish with us

Policies and ethics