Advertisement

Bioremediation of Nitroexplosive Waste Waters

  • Pradnya Pralhad KanekarEmail author
  • Seema Shreepad Sarnaik
  • Premlata Sukhdev Dautpure
  • Vrushali Prashant Patil
  • Sagar Pralhad Kanekar
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Explosives, particularly nitro explosives, are synthesized globally and are high energy materials, consisting of elements like carbon, hydrogen, oxygen, and nitrogen. When subjected to any stimuli, they can undergo a very rapid, self-propagating, and exothermic decomposition reactions, resulting in the formation of more stable materials like CO2, H2O, and N2 with the development of sudden high pressure.

Keywords

Nitro Group Nitroaromatic Compound Pentaerythritol Tetra Nitrate Activate Sludge Reactor Strain DN22 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank the High Explosive (HE) factory, Pune and High Energy Material Research Laboratory (HEMRL), Defense Research and Development Organization (DRDO), Pune for providing nitroexplosive waste water samples and relevant information. Part of the work on biodegradation of nitroexplosives was supported by Department of Biotechnology, Govt. of India, New Delhi, Indo-US Science and Technology Forum (IUSSTF) Govt. of India and US Govt. and HEMRL, Pune, The authors are thankful to authorities of MACS’ Agharkar Research Institute, Pune for providing necessary facilities to carry out the work, compile the data and present in the form of a book chapter.

References

  1. Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Wat Res 37:3499–3507CrossRefGoogle Scholar
  2. Ahmad F, Schnitker SP, Newell CJ (2007) Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers. J Contam Hydrol 90(1–2):1–20CrossRefGoogle Scholar
  3. Aken BV, Yoon JM, Just CL, Schnoor JL (2004a) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides X nigra DN-34). Environ Sci Technol 38:4572–4579CrossRefGoogle Scholar
  4. Aken BV, Yoon JM, Schnoor JL (2004b) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN 34). Appl Environ Microbiol 70(1):508–517CrossRefGoogle Scholar
  5. Alnaizy R, Akgerman A (1999) Oxidative treatment of high explosives contaminated waste water. Wat Res 33(9): 2021–2030Google Scholar
  6. Anonymous (2010–2011) Biodegradation of nitroexplosives. ARI Annual Report 2010–2011 Pune, India, pp 12Google Scholar
  7. Beller HR (2002) Anaerobic biotransformation of RDX (hexahydro- 1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Wat Res 36:2533–2540CrossRefGoogle Scholar
  8. Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–626CrossRefGoogle Scholar
  9. Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264CrossRefGoogle Scholar
  10. Bhatt M, Zhao JS, Halasz A, Hawari J (2006) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by novel fungi isolated from unexploded ordnance contaminated marine sediment. J Ind Microbiol Biotechnol 33:850–858CrossRefGoogle Scholar
  11. Bhatt M, Zhao JS, Monteil-Rivera F, Hawari J (2005) Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J Ind Microbiol Biotechnol 32:261–267CrossRefGoogle Scholar
  12. Bhushan B, Halasz A, Hawari J (2005) Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol 69(4):448–455CrossRefGoogle Scholar
  13. Bhushan B, Halasz A, Spain JC, Thiboutot S, Ampleman G, Hawari J (2002) Biotransformation of hexahydro- 1,3,5-trinitro- 1,3,5- triazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol 36:3104–3108CrossRefGoogle Scholar
  14. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004) Chemotaxis- mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophy Res Comm 316:816–821CrossRefGoogle Scholar
  15. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003) Biotransformation of hexahydro- 1,3,5-trinitro-1,3,5- triazine (RDX) by a rabbit liver cyctochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. Strain DN22. Appl Environ Microbiol 69(3):1347–1351CrossRefGoogle Scholar
  16. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322Google Scholar
  17. Boopathy R (2001) Enhanced biodegradation of cyclotetramethylenetetranitramine (HMX) under mixed electron-acceptor condition. Biores Technol 76(3):241–244CrossRefGoogle Scholar
  18. Boopathy R, Gurgas M, Ullian J, Manning JF (1998) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131CrossRefGoogle Scholar
  19. Borch T, Inskeep WP, Harwood IA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133CrossRefGoogle Scholar
  20. Chen SD, Chen CY, Wang YF (1999) Treating high-strength nitrate wastewater by three biological processes. Water Sci Technol 39(10–11):311–314Google Scholar
  21. Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp. strain DN22. Soil Biol Biochem 30(8/9):1159–1167CrossRefGoogle Scholar
  22. Coleman NV, Spain JC, Duxbury T (2002) Evidences that RDX biodegradation by Rhodococcus strain DN 22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbial 93: 463–472Google Scholar
  23. Crocker FH, Indest KJ, Fedrickson KL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. App Microbiol Biotechnol 73(2):274–290CrossRefGoogle Scholar
  24. Dautpure PS (2007) Microbial degradation of Nitroexplosive HMX (High Melting Explosive) Ph.D. Thesis, Pune University, Pune, M.S., IndiaGoogle Scholar
  25. Davis EP, Boopathy R, Manning J (1997) Use of trinotrobenzene as a nitrogen source by Pseudomonas vesicularis isolated from soil. Curr Microbiol 34(3):192–197CrossRefGoogle Scholar
  26. Dey S (2001) Bioconversion of 1, 3 dinirobenzene by M. colpogenes strain MCM B-410: quantitation and characterization of the intermediates. J Environ Biol 22(2):119–128Google Scholar
  27. Dey S (2002) Enzymological aspects of bioconversion of m-dinitrobenzene. J Environ Biol 23(3):289–294Google Scholar
  28. Dey S, Kanekar P, Godbole SH (1986) Aerobic microbial degradation of m-Dinitrobenzene. Indian J Environ Health 29(2):118–128Google Scholar
  29. Erikson D (1941) Studies on some lake-mud strains of micromonospora. J Bacteriol 41(3):277–300Google Scholar
  30. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro- 1,3,5-trinitro- 1,3,5- triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68(1):166–172CrossRefGoogle Scholar
  31. Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004a) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5- triazine ring cleavage product 4-Nitro-2,4-Diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70(2):1123–1128CrossRefGoogle Scholar
  32. Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J (2004b) Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol 38:4130–4133CrossRefGoogle Scholar
  33. Fournier D, Trott S, Hawari J, Spain J (2005) Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS 178. Appl Environ Microbiol 71(8):4199–4202CrossRefGoogle Scholar
  34. Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro- 1,3,5-trinitro-1,3,5- triazine (RDX) under nitrate reducing conditions. Wat Sci Technol 38(7):33–40CrossRefGoogle Scholar
  35. Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Toxicol Chem 23(2):313–324CrossRefGoogle Scholar
  36. George SE, Clark GH, Brooks LR (2001) Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. Mutat Res 490:45–56CrossRefGoogle Scholar
  37. Gonzalez-Perez MM, van Dillewijn P, Wittch RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9(6):1535–1540CrossRefGoogle Scholar
  38. Groom CA, Halasz A, Paquet L, Morris N, Olivier L, Dubois C, Hawari J (2002) Accumulation of HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil. Environ Sci Technol 36:112–118CrossRefGoogle Scholar
  39. Halasz A, Groom C, Zhou E, Paquet L, Beaulieu C, Deschamps S, Corriveau A, Thiboutot S, Amplemen G, Dubois C, Hawari J (2002) Detection of explosives and their degradation products in soil environments. J Chromato A 963:411–418CrossRefGoogle Scholar
  40. Hatzinger PB, Fuller ME, Rungmakol D, Schuster RL, Steffen RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: sorption-desorption isotherms. Environ Toxicol Chem 23(2):306–312CrossRefGoogle Scholar
  41. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro- 1,3,5,7- tetranitro- 1,3,5,7- tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75CrossRefGoogle Scholar
  42. Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2,4,6-trinitrotoluene transformation by a tropical marine yeast Yarrowia lipolytica NCIM3589. Marine Pollut Bull 49(9–10):783–788CrossRefGoogle Scholar
  43. Jensen HL, Gundersen K (1955) Biological decomposition of aromatic nitro-compound. Nature 175:341CrossRefGoogle Scholar
  44. Kanekar P, Godbole SH (1983) Pseudomonas trinitrotoluenophila sp. nov. isolated from soil exposed to explosive waste. Biovigyanam 9:5–8Google Scholar
  45. Kanekar P, Godbole SH (1984) Microbial degradation of Trinitrotoluene (TNT). Indian J Environ Health 26:89–101Google Scholar
  46. Kanekar PP, Dautpure PS, Sarnaik SS (2003) Biodegradation of nitroexplosives. Indian J Exp Biol 41:991–1001Google Scholar
  47. Kanekar SP, Kanekar PP, Sarnaik SS, Gujrathi NP, Shede PN, Kedargol MR, Reardon KF (2009) Bioremediation of nitroexplosive wastewater by an yeast isolate Pichia sydowiorum MCM Y-3 in fixed film bioreactor. J Ind Microbiol 36(2):253–260CrossRefGoogle Scholar
  48. Karmarkar S, Saxena A, Verma RG, Karmarkar S, Mathur K, Mathur S, Singh S, Khadikar P (2000) Determining environmental behaviour and biological activity of RDX and related compounds. Poll Res 19(3):337–344Google Scholar
  49. Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine- degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60(12):4608–4611Google Scholar
  50. Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT 2,4,6-Trinitrotoluene and RDX (Hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 46:278–282CrossRefGoogle Scholar
  51. Kroger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as a part of combined biological-chemical procedure for mineralization. Biodegradation 15(4):241–248CrossRefGoogle Scholar
  52. Kuşçu OS, Sponza DT (2011) Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system. J Hazard Mater 187(1–3):222–234Google Scholar
  53. Kutty R, Bennett GN (2005) Biochemical characterization of trinitrotoluene transforming oxygen-insensitive nitroreductases from Clostridium acetobutylicum ATCC 824. Arch Microbiol 184(3):158–167CrossRefGoogle Scholar
  54. Labana S, Pandey G, Paul D, Basu A, Jain RK (2005a) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protopharmiae RKJ100. Environ Sci Technol 39:3330–3337CrossRefGoogle Scholar
  55. Labana S, Singh OV, Basu A, Pandey G, Jain RK (2005b) A microcosm study on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protopharmiae RKJ100. Appl Microbiol Biotechnol 68(3):417–424CrossRefGoogle Scholar
  56. Light CL, Wilber GG, Clarkson WW (1997) Biological treatment of RDX contaminated soils. In: Proceedings of the 52nd Purdue Industrial Waste Conference, Ann Arbor Press, Chelsea, MIGoogle Scholar
  57. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-trazine. Appl Environ Microbiol 42(5):817–823Google Scholar
  58. McCormick NG, Cornell JH, Kaplan AM (1984) The fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and related compounds in anaerobic denitrifying continuous culture systems using simulated waste water. Technical Report Natick/TR-85/008, ADA149462. US Army Natick Research and Development Center, MAGoogle Scholar
  59. McCormick NG, Feehanry FE, Levinson HS (1976) Microbial Transformation of 2,4,6-Trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949Google Scholar
  60. Medina VF, Larson SL, Bergstedt AE, McCutcheon SC (2000) Phyto-removal of trinitrotoluene from water with batch kinetic studies. Wat Res 34(10):2713–2722CrossRefGoogle Scholar
  61. Monteil-Rivera F, Groom C, Hawari J (2003) Sorption and degradation of octahydro- 1,3,5,7- tetranitro- 1,3,5,7- tetrazocine in soil. Environ Sci Technol 37:3878–3884CrossRefGoogle Scholar
  62. Moore FW (1949) Utilization of pyridine by microorganisms. J Gen Microbiol 3:143–149CrossRefGoogle Scholar
  63. Ningthoujam D (2005) Isolation and identification of a Brevibacterium linens strain degrading p-nitrophenol. African J Biotechnol 4(3):256–257Google Scholar
  64. Nishino SF, Spain JC (2001) Identification of bottlenecks to the in situ bioremediation of dinitrotoluene. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) Bioremediation of Energetics, Phenolics, and Polycyclic Aromatic Hydrocarbons. Battelle Press, ColumbusGoogle Scholar
  65. Nishino SF, Spain JC (2002) Biodegradation, transformation and bioremediation of nitroaromatic compounds. In: Hurst CH, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of Environmental Microbiology, 2nd edn. ASM Press, Washington DCGoogle Scholar
  66. Nishino SF, Spain JC (2004) Catabolism of nitroaromatic compounds. In: Ramos J-L (ed) The Pseudomonads Vol III. Biosynthesis of macromolecules and molecular metabolism. Kluwer Academic/Plenum Publishers, Dordrecht/New York, pp 575–608Google Scholar
  67. Oh BT, Just CL, Alvarez PJJ (2001) Hexahydro- 1,3,5-trinitro- 1,3,5- triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35:4341–4346CrossRefGoogle Scholar
  68. Osman JL, Klausmeier RE (1972) The microbial degradation of explosives. Dev Ind Microbiol 14:247–252Google Scholar
  69. Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409CrossRefGoogle Scholar
  70. Pandey G, Paul D, Jain RK (2003) Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett 229(2):231–236CrossRefGoogle Scholar
  71. Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Environ Microbiol 34(2):232–233Google Scholar
  72. Patil VP, Kanekar PP, Sarnaik SS (2011) Bioremediation of nitro explosive Diaminodinitro ethylene (FOX-7) containing waste water. J Biorem Biodeg SI 006. doi:  10.4172/2155-6199.1000001
  73. Pennington J, Brannon JM, Gunnison D, Herrelson DW, Zakikhani M, Miyares P, Jenkins TF, Clarke J, Hayes C, Ringleberg D, Perkins E, Fredrickson H (2001) Soil Sediment Contam 10:45CrossRefGoogle Scholar
  74. Pinar G, Doque E, Haidour A, Oliva J-M, Barbero LS, Calvo V, Ramos JL (1997) Removal of high concentrations of nitrate from industrial wastewaters by bacteria. App Environ Microbiol 63(5):2071–2073Google Scholar
  75. Reardon KF (1992) Immobilized cell bioreactor for 2,4-dinitrotoluene degradation. Air Force Office of Scientific Research ReportGoogle Scholar
  76. Reardon KF (1994) An immobilized-cell fluidized-bed bioreactor for 2,4-dinitrotoluene biodegradation. Air Force Office of Scientific Research ReportGoogle Scholar
  77. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111CrossRefGoogle Scholar
  78. Rogovskaya TI (1951) Influence of trinitrotoluene on microorganisms and the biochemical processes of self-purification in waters. Mikrobiologiya (Noskva) 20:265–272Google Scholar
  79. Ronen Z, Brenner A, Abeliovich A (1998) Biodegradation of RDX-contaminated wastes in a nitrogen-deficient environment. Wat Sci Tech 38(4–5):219–224CrossRefGoogle Scholar
  80. Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxix of a Ralstonia sp. SJ98 towards different nitroaromatic compounds (NACs) and their degradation. Biochem Biophys Res Commun 269:117–123CrossRefGoogle Scholar
  81. Sherburne LA, Shrout JD, Alvarez PJJ (2005) Hexahydro- 1,3,5- trinitro- 1,3,5- triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation 16:539–547CrossRefGoogle Scholar
  82. Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388CrossRefGoogle Scholar
  83. Simpson JR, Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem J 55(2):XXIVGoogle Scholar
  84. Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38(2):152–167CrossRefGoogle Scholar
  85. Singh R, Soni P, Kumar P, Purohit S, Singh A (2009) Biodegradation of high explosive production effluent containing RDX and HMX by denitrifying bacteria. World J Microbiol Biotechnol 25(2):269–275CrossRefGoogle Scholar
  86. Soojhanwon I, Lokhande PD, Kodam KM, Gawai KR (2005) Biotransformation of nitroaromatics and their effects on mixed function oxidase system. Enz Microb Technol 37(5):527–533CrossRefGoogle Scholar
  87. Spain JC (1995) Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 49:523–555CrossRefGoogle Scholar
  88. Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis, CRC Press, LLC, FloridaGoogle Scholar
  89. Spanggord RJ, Mabey WR, Mill T, Chou TW, Smith JH, Lee S, Robert D (1983) Environmental fate studies on certain munitions wastewater constituents. Phase IV-lagoon model studies. ADA138550, US Army Medical Research and Development Command, Fort Detrick, MDGoogle Scholar
  90. Speitel GE Jr, Engels TL, McKinney DC (2001) Biodegradation of RDX in unsaturated soil. Bioremediation J 5(1):1–11CrossRefGoogle Scholar
  91. Stenuit BA, Agathos SN (2011) Biodegradation and bioremediation of TNT and other nitro explosives. Comprehensive Biotechnology, 2nd edn. Academic Press, pp 167–181Google Scholar
  92. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23(6):845–850CrossRefGoogle Scholar
  93. Thompson KT, Crocker FH, Fedrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71(12):8265–8272CrossRefGoogle Scholar
  94. Torre CD, Corsi I, Alcaro L, Amato E, Focardi S (2006) The involvement of cytochrome p450 system in the fate of 2,4,6-trinitrotoluene (TNT) in European eel [Anguilla anguilla (Linnaeus, 1758)]. Biochem Soc Trans 34(6):1228–1230CrossRefGoogle Scholar
  95. Toze S, Zappia L (1999) Microbial degradation of munition compounds in production wastewater. Water Res 33(13):3040–3045CrossRefGoogle Scholar
  96. Traxler RW, Wood E, Delaney JM (1975) Bacterial degradation of α-Trinitrotoluene. Dev Ind Microbiol 16:71–76Google Scholar
  97. Tront JM, Hughes JB (2005) Oxidative microbial degradation of 2,4,6-trinitrotoluene via 3, methyl-4,6-dinitrocatechol. Environ Sci Technol 39(12):4540–4549CrossRefGoogle Scholar
  98. Willams RT, Ziegenfuss PS, Sisk WE (1992) Composting of explosives and propellant contaminated soils under thermophilic and mesophilic conditions. J Ind Microbiol 9:137–144CrossRefGoogle Scholar
  99. Won WD, Heckly RJ, Glover DG, Hoffosommer JC (1974) Metabolic disposition of 2,4,6-Trinitrotoluene. Appl Microbiol 27(3):513–516Google Scholar
  100. Yinon J (1990) Toxicity and metabolism of explosives, CRC pressGoogle Scholar
  101. Zala S, Nerurkar A, Desai A, Ayyer J, Akolkar V (1999) Biotreatment of nitrate-rich industrial effluent by suspended bacterial growth. Biotechnol Lett 21:481–485CrossRefGoogle Scholar
  102. Zhao JS, Greer CW, Thiboutot S, Ampleman G, Hawari J (2004a) Biodegradation of the nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50(2):91–96CrossRefGoogle Scholar
  103. Zhao JS, Manno D, Hawari J (2007) Abundance and diversity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-metabolizing bacteria in UXO-contaminated marine sediments. FEMS Microbial Ecol 59(3):706–717CrossRefGoogle Scholar
  104. Zhao JS, Paquet L, Halasz A, Manno D, Hawari J (2004b) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237(1):65–72CrossRefGoogle Scholar
  105. Zoh KD, Stenstrom MK (2002) Fenton oxidation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX). Wat Res 36: 1331–1341Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pradnya Pralhad Kanekar
    • 1
    Email author
  • Seema Shreepad Sarnaik
    • 1
  • Premlata Sukhdev Dautpure
    • 1
  • Vrushali Prashant Patil
    • 1
  • Sagar Pralhad Kanekar
    • 1
  1. 1.Microbial Sciences DivisionMACS-Agharkar Research InstitutePuneIndia

Personalised recommendations