Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments

  • Harald ClausEmail author
Part of the Environmental Science and Engineering book series (ESE)


2,4,6-Trinitrotoluene (TNT) is a nitroaromatic explosive that was released into soil and water ecosystems mainly due to its massive use during the two world wars.


Nitroaromatic Compound Sole Growth Substrate Stropharia Rugosoannulata Nematoloma Frowardii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alvarez PJ, Illman WA (2005) Bioremediation and Natural Attenuation. Process Fundamentals and Mathematical Models. WileyGoogle Scholar
  2. Anderson PJ, Cole LJ, McKay DB, Entsch B (2002) A flavoprotein encoded in Selenomonas ruminantium is characterized after expression in Escherichia coli. Prot Exp Pur 24:429–438CrossRefGoogle Scholar
  3. Ashby J, Burlinson P, Lefevre A, Topham J (1985) Non-genotoxicity of 2,4,6-trinitrotoluene (TNT) to the mouse bone marrow and the rat liver: implications for its carcinogenicity. Arch Toxicol 58:9–14CrossRefGoogle Scholar
  4. Blasco R, Castillo F (1993) Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Appl Environ Microbiol 59:1774–1778Google Scholar
  5. Boopathy R, Kulpa CF (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278CrossRefGoogle Scholar
  6. Breitung J (1996) Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol 44:795–800CrossRefGoogle Scholar
  7. Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr Microbiol 28:185–190CrossRefGoogle Scholar
  8. Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL (2005a) Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bact 187:396–399CrossRefGoogle Scholar
  9. Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005b) PnrA, a new nitroreductase-family in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7:1211–1219CrossRefGoogle Scholar
  10. Claus H, Bausinger T, Lehmler I, Dehner U, Preuß J, König H (2006) Bakterielles Einschrittverfahren zum TNT-Abbau. German Patent 10359610:5Google Scholar
  11. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2007a) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35CrossRefGoogle Scholar
  12. Claus H, Perret N, Bausinger T, Fels G, Preuß J, König H (2007b) TNT transformation products are affected by the growth conditions of Raoultella terrigena. Biotechnol Lett 29:411–419CrossRefGoogle Scholar
  13. Claus H, Strong PJ (2010) Laccase. In: Flickinger MC (ed) Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, Wiley, pp 1–22Google Scholar
  14. Crawford RL (1995) The microbiology and treatment of nitroaromatic compounds. Curr Opin Biotechnol 6:329–336CrossRefGoogle Scholar
  15. Crawford RL, Lynch J, Crawford DL (2005) Bioremediation: principles and applications. Cambridge University PressGoogle Scholar
  16. Daun G, Lenke H, Reuss M, Knackmuß HJ (1998) Biological treatment of TNT contaminated soil 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32:1956–1963CrossRefGoogle Scholar
  17. Dawel G, Kästner M, Michels J, Poppitz W, Günther W, Fritsche W (1997) Structure of laccase-mediated products of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix. Appl Environ Microbiol 63:2560–2565Google Scholar
  18. Denny WA (2002) Nitroreductase-based GDEPT. Curr Pharm Des 8:1349–1361CrossRefGoogle Scholar
  19. Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932CrossRefGoogle Scholar
  20. Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, Gemsa D, von Löw E (1998) Incorporation of 14C-labeled 2,4,6-trinitrotoluene metabolites into different soil fractions after anaerobic-aerobic treatment of soil/molasses mixtures. Environ Sci Technol 32:3529–3535CrossRefGoogle Scholar
  21. Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, von Löw E (1999) Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095CrossRefGoogle Scholar
  22. Duque E, Haidour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bact 175:2278–2283Google Scholar
  23. Ederer M, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostidia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88CrossRefGoogle Scholar
  24. Eilers A, Rüngeling E, Stündl UM, Gottschalk G (1999) Metabolism of 2,4,6-trinitrotoluene by the white rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P450. Appl Microbiol Biotechnol 53:75–80CrossRefGoogle Scholar
  25. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  26. Esteve-Núñez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR 11. J Bact 182:1352–1355CrossRefGoogle Scholar
  27. Esteve-Núñez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808CrossRefGoogle Scholar
  28. French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and a pentaerythitol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868Google Scholar
  29. Fritsche W (1998) Umweltmikrobiologie—Grundlage und Anwendungen. Gustav Fischer Verlag, JenaGoogle Scholar
  30. Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 213–237Google Scholar
  31. Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Tox Chem 23:313–324CrossRefGoogle Scholar
  32. Fuller ME, Manning JF Jr (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83CrossRefGoogle Scholar
  33. George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236CrossRefGoogle Scholar
  34. Goodwin A, Kersulyte S, Sisson G, van Zanten Veldhuyzen SJO, Berg DE, Hoffman PS (1998) Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insenstive NADPH nitroreductase. Mol Microbiol 28:383–393CrossRefGoogle Scholar
  35. Haarck T, Erdinger L, Boche G (2001) Mutagenicity in Salmonella typhimurium TA98 and TA 100 of nitroso and respective hydroxylamine compounds. Mutat Res 491:183–193CrossRefGoogle Scholar
  36. Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370CrossRefGoogle Scholar
  37. Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172CrossRefGoogle Scholar
  38. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  39. Hawari J, Halasz A, Beaudet S, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6,-trinitrotoluene (TNT) with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986Google Scholar
  40. Haynes CA, Koder RL, Miller AF, Rodgers DW (2002) Structures of nitroreductase in three states. Effects of inhibitor binding and reduction. J Biol Chem 277:11513–11520CrossRefGoogle Scholar
  41. Heiss G, Knackmus HJ (2002) Bioelimination of trinitroaromatic compounds: immobilisation versus mineralization. Curr Opin Microbiol 5:282–287CrossRefGoogle Scholar
  42. Held T, Draude G, Schmid FRJ, Brokamp A, Reis KH (1997) Enhanced humification as an in situ bioremediation technique for 2,4,6-trinitrotoluene (TNT) contaminated soil. Environ Technol 18:479–487CrossRefGoogle Scholar
  43. Homma-Takeda S, Hiraku Y, Ohkuma Y, Oikawa S, Murata M, Ogawa K (2002) 2,4,6-trinitrotoluene induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36:555–566CrossRefGoogle Scholar
  44. Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotuene and its metabolites. Ecotox Environ Safety 35:282–287CrossRefGoogle Scholar
  45. Jansky HJ, Neumann V (1999) Preisentwicklung in der Bodendekontamination: wirtschaftliche und technische Rahmenbedingungen. TerraTech 2(99):25–29Google Scholar
  46. Kadiyala V, Nedeau LJ, Spain JC (2003) Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl Environ Microbiol 69:6520–6626CrossRefGoogle Scholar
  47. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripoca SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54CrossRefGoogle Scholar
  48. Khan H, Barna T, Harris RJ, Bruce NC, Barsukov I, Munro AW, Moody PCE, Scutton NS (2004) Atomic resolution structures and solution behaviour of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. J Biol Chem 29:30563–30672CrossRefGoogle Scholar
  49. Kim HJ, Song HG (2005) Purification and characterization of NAD(P)H dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 68:766–773CrossRefGoogle Scholar
  50. Kim HY, Bennett GN, Song HG (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028CrossRefGoogle Scholar
  51. Klausmeier RE, Appleton JA, DuPre ES, Tenbarge K (2001) The enzymology of trinitrotoluene reduction. Int Biodeter Biodegrad 48:67–73CrossRefGoogle Scholar
  52. Klausmeier RE, Osmon JL, Walls DR (1973) The effect of trinitrotoluene on microorganisms. Dev Ind Microbiol 15:309–317Google Scholar
  53. Knox RJ, Burke PJ, Chen S, Kerr DJ (2003) CB 1954: from the Walker tumor to NQO2 and VDEPT. Curr Pharm Des 9:2091–2104CrossRefGoogle Scholar
  54. Koss G, Lommel A, Ollroge I, Tesseraux I, Haas R, Kappos AD (1989) Zur Toxikologie der Nitrotoluole und weiterer Nitroaromaten aus rüstungsbedingten Altlasten. Bundesgesundheitsblatt 32:527–536Google Scholar
  55. Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248CrossRefGoogle Scholar
  56. Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutout S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39CrossRefGoogle Scholar
  57. Lei B, Liu M, Huanh S, Tu SC (1994) Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bact 176:3552–3558Google Scholar
  58. Lenke H, Achtnich C, Knackmus HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 91–126Google Scholar
  59. Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuß HJ (1998) Biological treatment of TNT-contaminated soil II: Biological induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971CrossRefGoogle Scholar
  60. Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307CrossRefGoogle Scholar
  61. Maeda T, Kadokami K, Ogawa HI (2006) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone, Kitakyushu. Japan J Environ Biotechnol 6:33–39Google Scholar
  62. Makris KC, Sarkarb D, Datta R (2010) Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. J Environ Monitor 2010:399–403CrossRefGoogle Scholar
  63. Millar RW, Arber AW, Endsor RM, Hamid J, Colclough ME (2011) Clean manufacture of 2,4,6-trinitrotoluene (TNT) via improved regioselectivity in the nitration of toluene. J Ener Mat 29:88–114CrossRefGoogle Scholar
  64. Montgomery MT, Coffin RB, Boyd TJ, Smith JP, Walker SE, Osburn CL (2011) 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments. Environ Poll 159:3673–3680CrossRefGoogle Scholar
  65. Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manag 98:51–55CrossRefGoogle Scholar
  66. Nokhbeh MR, Boroumandi S, Pokorny N, Koziarz P, Paterson ES, Lambert IB (2002) Identification and characterization of SnrA, and inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar typhymurium TA 1535. Mutat Res 508:59–70CrossRefGoogle Scholar
  67. Nyanhongo GS, Aichernig N, Ortner M, Steiner W, Guebitz GM (2009) Incorporation of 2,4,6-trinitrotoluene transforming bacteria into explosive formulations. J Hazard Mater 165:285–290CrossRefGoogle Scholar
  68. Nyanhongo GS, Rodríguez Couto S, Gübitz GM (2006) Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64:359–370CrossRefGoogle Scholar
  69. Oh BT, Sarath G, Shea PJ, Drijber RA, Comfort SD (2000) Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay. J Microbiol Methods 42:149–158CrossRefGoogle Scholar
  70. Oh BT, Shea PJ, Drijber RA, Vasilyeva Gk, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319CrossRefGoogle Scholar
  71. Osmon JL, Klausmeier RE (1972) The microbial degradation of explosives. Dev Ind Microbiol 14:247–252Google Scholar
  72. Padda RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297CrossRefGoogle Scholar
  73. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750CrossRefGoogle Scholar
  74. Park C, Kim TH, Kim S, Kim SW, Lee J, Kim SH (2003) Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571Google Scholar
  75. Park HJ, Kreutzer R, Reiser CO, Sprinzl M (1992) Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli. Eur J Biochem 205:875–879CrossRefGoogle Scholar
  76. Park JS, In BH, Namkoong W (2012) Toxicological evaluation for bioremediation processes of TNT-contaminated soil by Salmonella mutagenicity assay. Korean J Chem Eng 29:1074–1080CrossRefGoogle Scholar
  77. Preuß J (1996) Alte Rüstungsstandorte -Erfassung und Bewertung von Umweltkontaminationen. Forschungsmagazin der Johannes-Gutenberg-Universität Mainz 1, pp 35–51Google Scholar
  78. Preuß J, Eitelberg F (1999) Hallschlag. ISBN 3-88250-045-XGoogle Scholar
  79. Ramos JL, Gonzales-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281CrossRefGoogle Scholar
  80. Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransfomation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086CrossRefGoogle Scholar
  81. Reinhard S, Feldmann R (1998) Von der Forschung in die Praxis. Umweltmagazin 12(98):48Google Scholar
  82. Ribeiro EN, DaSilva FT, DePaiva TCB (2012) Ecotoxicological evaluation of wastewater from 2.4.6-TNT production. J Environ Sci Health Part A—Toxic/Hazard Substan Environ Eng 47:184–191CrossRefGoogle Scholar
  83. Riefler PG, Smets BF (2002) NAD(P)H: flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction. Appl Environ Microbiol 68:1690–1696CrossRefGoogle Scholar
  84. Robertson BK, Jjemba PK (2005) Enhanced bioavailibity of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270CrossRefGoogle Scholar
  85. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111CrossRefGoogle Scholar
  86. Rosser SJ, Basran A, Travis ER, French CE, Bruce NC (2001) Microbial transformation of explosives. In: Laskin AI, Bennett JW, Gadd G (eds) Advances in Applied Microbiology Vol. 49, San Diego Academic Press, pp 1–35Google Scholar
  87. Rylott EL, Lorenz A, Bruce NC (2011) Biodegradation and transformation of explosives. Curr Opin Biotechnol 22:434–440CrossRefGoogle Scholar
  88. Sarlauskas J, Nerneikaite-Ceniene A, Anusevicius Z, Miseviciene L, Julvez MM, Medina M (2004) Flavoenzyme-catalysed redox cycling of hydroxylamino and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Arch Biochem Biophys 425:184–192CrossRefGoogle Scholar
  89. Scheibner K, Hofrichter M, Fritsche W (1997a) Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol Lett 19:835–839CrossRefGoogle Scholar
  90. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997b) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457CrossRefGoogle Scholar
  91. Schmidt TC, Steinbach K, von Löw E, Stork G (1998) Highly polar metabolites of nitroaromatic compounds in ammunition wastewater. Chemosphere 37:1079–1090CrossRefGoogle Scholar
  92. Schmitz M (1995) Vorversuche zur Sanierung des Rüstungsaltlastenstandortes Hallschlag. TerraTech 6(95):31–34Google Scholar
  93. Schneider K, Oltmanns J, Hassauer M, Schuhmacher US (2000) Ermittlung von Prüfwerten für ausgewählte rüstungsaltlastenspezifische Schadstoffe, 1998–1999. Im Auftrag des Umweltbundesamtes Berlin F + E-Vorhaben 298 76 251Google Scholar
  94. Schneider U (1989) Erfahrungen aus systematischen Untersuchungen von Standorten ehemaliger Rüstungsbetriebe. In: Der Niedersächsische Umweltminister (Hrsg). Expertengespräch Rüstungsaltlasten 25/26 April 1989 in Hannover, pp 261–279Google Scholar
  95. Schrader PS, Hess TF (2004) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J Environ Qual 33:1202–1209CrossRefGoogle Scholar
  96. Sembries S, Crawford R (1997) Production of Clostridium bifermentans spores as inoculum for bioremediation of nitroaromatic contaminants. Appl Environ Microbiol 63:2100–2104Google Scholar
  97. Shin JH, Song HG (2009) Nitroreductase II involved in 2,4,6-trinitrotoluene degradation: purification and characterization from Klebsiella sp. C1. J Microbiol 47:536–541CrossRefGoogle Scholar
  98. Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–167CrossRefGoogle Scholar
  99. Singh SN, Tripathi RD (2006) Environmental bioremediation technologies. Springer, BerlinGoogle Scholar
  100. Solyanikova IP, Baskunov BP, Baboshin MA, Saralov AI, Golovleva LA (2012) Detoxification of high concentrations of trinitrotoluene by bacteria. Appl Biochem Microbiol 48:21–27CrossRefGoogle Scholar
  101. Sommerville C, Nishino S, Spain J (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bact 177:3837–3842Google Scholar
  102. Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca RatonGoogle Scholar
  103. Spanggord RJ, Stewart KR, Riccio ES (1995) Mutagenicity of tetranitroazoxytoluenes: a preliminary screening in Salmonella typhimurium strains TA100 and TA100NR. Mutat Res 335:207–211CrossRefGoogle Scholar
  104. Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064CrossRefGoogle Scholar
  105. Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434CrossRefGoogle Scholar
  106. Sunahara GI, Dodard S, Sarrazin M, Paquet L, Ampleman G, Thiboutot S, Hawari J, Renoux AY (1999) Ecotoxicological characterization of energetic substances using a soil extraction procedure. Ecotoxicol Environ Safety 43:138–148CrossRefGoogle Scholar
  107. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850CrossRefGoogle Scholar
  108. Thiele S, Fernandez E, Bollag JM (2002) Enzymatic transformation and binding of labeled 2,4,6-trinitrotoluene to humic substances during an anaerobic/aerobic incubation. J Environ Qual 31:437–444CrossRefGoogle Scholar
  109. Thomas H, Gerth A, Eulering B, Böhler A (2001) Neue Erkenntnisse zur biologischen in situ Sanierung TNT-kontaminierter Böden. TerraTech 2(01):52–54Google Scholar
  110. Travis ER, Bruce NC, Rosser SJ (2008a) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:119–126CrossRefGoogle Scholar
  111. Travis ER, Bruce NC, Rosser SJ (2008b) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439CrossRefGoogle Scholar
  112. Ullah H, Shah AA, Hasan F, Hameed A (2010) Biodegradation of trinitrotoluene by immobilized Bacillus sp. YRE1. Pak J Bot 42:3357–3367Google Scholar
  113. Van Aken B, Agathos SN (2001) Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach In: Laskin AI, Bennett JW, Gadd G (eds) Advances in applied microbiology Vol 49, San Diego Academic Press, pp 1–77Google Scholar
  114. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252Google Scholar
  115. Wang CJ, Thiele S, Bollag JM (2002) Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch Environ Contam Toxicol 42:1–8CrossRefGoogle Scholar
  116. Wang ZY, Ye ZF, Zhang MH, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochem 45:993–1001CrossRefGoogle Scholar
  117. Weiss M, Geyer R, Gunther T, Kaestner M (2004a) 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments. Environ Tox Chem 23:2049–2060CrossRefGoogle Scholar
  118. Weiss M, Geyer R, Russow R, Richnow HH, Kastner M (2004b) Fate and metabolism of (N-15)2,4,6-trinitrotoluene in soil. Environ Tox Chem 23:1852–1860CrossRefGoogle Scholar
  119. Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivates in Escherichia coli. J Bact 180:5529–5539Google Scholar
  120. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574CrossRefGoogle Scholar
  121. Wittich RM, Ramos JL, van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776CrossRefGoogle Scholar
  122. Wujcik WJ, Lowe WL, Marks PJ (1992) Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater. Environ Prog 11:178–189CrossRefGoogle Scholar
  123. Zhao JS, Fournier D, Thiboutot S, Ampleman G, Hawari J (2004) Biodegradation and bioremediation of explosives. In: Singh A, Ward OP (eds) Soil Biology I. Applied Bioremediation and Phytoremediation, Springer-Verlag, pp 55–80Google Scholar
  124. Zhu B, Peng RH, Fu XY, Jin XF, Zhao W, Xu J, Han HJ, Gao JJ, Xu ZS, Bian L, Yao QH (2012) Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme. Plos One 7(7)e39861Google Scholar
  125. Ziganshin AM, Gerlach R, Naumenko EA, Naumova RP (2010) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology 79:178–183CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Microbiology and Wine ResearchJohannes Gutenberg-University MainzMainzGermany

Personalised recommendations