Skip to main content

Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments

  • Chapter
  • First Online:
Biological Remediation of Explosive Residues

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

2,4,6-Trinitrotoluene (TNT) is a nitroaromatic explosive that was released into soil and water ecosystems mainly due to its massive use during the two world wars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez PJ, Illman WA (2005) Bioremediation and Natural Attenuation. Process Fundamentals and Mathematical Models. Wiley

    Google Scholar 

  • Anderson PJ, Cole LJ, McKay DB, Entsch B (2002) A flavoprotein encoded in Selenomonas ruminantium is characterized after expression in Escherichia coli. Prot Exp Pur 24:429–438

    Article  Google Scholar 

  • Ashby J, Burlinson P, Lefevre A, Topham J (1985) Non-genotoxicity of 2,4,6-trinitrotoluene (TNT) to the mouse bone marrow and the rat liver: implications for its carcinogenicity. Arch Toxicol 58:9–14

    Article  Google Scholar 

  • Blasco R, Castillo F (1993) Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Appl Environ Microbiol 59:1774–1778

    Google Scholar 

  • Boopathy R, Kulpa CF (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278

    Article  Google Scholar 

  • Breitung J (1996) Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems. Appl Microbiol Biotechnol 44:795–800

    Article  Google Scholar 

  • Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidases. Curr Microbiol 28:185–190

    Article  Google Scholar 

  • Caballero A, Esteve-Núñez A, Zylstra GJ, Ramos JL (2005a) Assimilation of nitrogen from nitrite and trinitrotoluene in Pseudomonas putida JLR11. J Bact 187:396–399

    Article  Google Scholar 

  • Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005b) PnrA, a new nitroreductase-family in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7:1211–1219

    Article  Google Scholar 

  • Claus H, Bausinger T, Lehmler I, Dehner U, Preuß J, König H (2006) Bakterielles Einschrittverfahren zum TNT-Abbau. German Patent 10359610:5

    Google Scholar 

  • Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preuß J, König H (2007a) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35

    Article  Google Scholar 

  • Claus H, Perret N, Bausinger T, Fels G, Preuß J, König H (2007b) TNT transformation products are affected by the growth conditions of Raoultella terrigena. Biotechnol Lett 29:411–419

    Article  Google Scholar 

  • Claus H, Strong PJ (2010) Laccase. In: Flickinger MC (ed) Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology, Wiley, pp 1–22

    Google Scholar 

  • Crawford RL (1995) The microbiology and treatment of nitroaromatic compounds. Curr Opin Biotechnol 6:329–336

    Article  Google Scholar 

  • Crawford RL, Lynch J, Crawford DL (2005) Bioremediation: principles and applications. Cambridge University Press

    Google Scholar 

  • Daun G, Lenke H, Reuss M, Knackmuß HJ (1998) Biological treatment of TNT contaminated soil 1. Anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32:1956–1963

    Article  Google Scholar 

  • Dawel G, Kästner M, Michels J, Poppitz W, Günther W, Fritsche W (1997) Structure of laccase-mediated products of coupling of 2,4-diamino-6-nitrotoluene to guaiacol, a model for coupling of 2,4,6-trinitrotoluene metabolites to a humic organic soil matrix. Appl Environ Microbiol 63:2560–2565

    Google Scholar 

  • Denny WA (2002) Nitroreductase-based GDEPT. Curr Pharm Des 8:1349–1361

    Article  Google Scholar 

  • Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932

    Article  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, Gemsa D, von Löw E (1998) Incorporation of 14C-labeled 2,4,6-trinitrotoluene metabolites into different soil fractions after anaerobic-aerobic treatment of soil/molasses mixtures. Environ Sci Technol 32:3529–3535

    Article  Google Scholar 

  • Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel KH, von Löw E (1999) Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095

    Article  Google Scholar 

  • Duque E, Haidour A, Godoy F, Ramos JL (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bact 175:2278–2283

    Google Scholar 

  • Ederer M, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostidia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88

    Article  Google Scholar 

  • Eilers A, Rüngeling E, Stündl UM, Gottschalk G (1999) Metabolism of 2,4,6-trinitrotoluene by the white rot fungus Bjerkandera adusta DSM 3375 depends on cytochrome P450. Appl Microbiol Biotechnol 53:75–80

    Article  Google Scholar 

  • Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  Google Scholar 

  • Esteve-Núñez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR 11. J Bact 182:1352–1355

    Article  Google Scholar 

  • Esteve-Núñez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808

    Article  Google Scholar 

  • French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and a pentaerythitol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868

    Google Scholar 

  • Fritsche W (1998) Umweltmikrobiologie—Grundlage und Anwendungen. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 213–237

    Google Scholar 

  • Fuller ME, Hatzinger PB, Rungmakol D, Schuster RL, Steffan RJ (2004) Enhancing the attenuation of explosives in surface soils at military facilities: combined sorption and biodegradation. Environ Tox Chem 23:313–324

    Article  Google Scholar 

  • Fuller ME, Manning JF Jr (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83

    Article  Google Scholar 

  • George I, Eyers L, Stenuit B, Agathos SN (2008) Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol 35:225–236

    Article  Google Scholar 

  • Goodwin A, Kersulyte S, Sisson G, van Zanten Veldhuyzen SJO, Berg DE, Hoffman PS (1998) Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insenstive NADPH nitroreductase. Mol Microbiol 28:383–393

    Article  Google Scholar 

  • Haarck T, Erdinger L, Boche G (2001) Mutagenicity in Salmonella typhimurium TA98 and TA 100 of nitroso and respective hydroxylamine compounds. Mutat Res 491:183–193

    Article  Google Scholar 

  • Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370

    Article  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  Google Scholar 

  • Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618

    Article  Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6,-trinitrotoluene (TNT) with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986

    Google Scholar 

  • Haynes CA, Koder RL, Miller AF, Rodgers DW (2002) Structures of nitroreductase in three states. Effects of inhibitor binding and reduction. J Biol Chem 277:11513–11520

    Article  Google Scholar 

  • Heiss G, Knackmus HJ (2002) Bioelimination of trinitroaromatic compounds: immobilisation versus mineralization. Curr Opin Microbiol 5:282–287

    Article  Google Scholar 

  • Held T, Draude G, Schmid FRJ, Brokamp A, Reis KH (1997) Enhanced humification as an in situ bioremediation technique for 2,4,6-trinitrotoluene (TNT) contaminated soil. Environ Technol 18:479–487

    Article  Google Scholar 

  • Homma-Takeda S, Hiraku Y, Ohkuma Y, Oikawa S, Murata M, Ogawa K (2002) 2,4,6-trinitrotoluene induced reproductive toxicity via oxidative DNA damage by its metabolite. Free Radic Res 36:555–566

    Article  Google Scholar 

  • Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotuene and its metabolites. Ecotox Environ Safety 35:282–287

    Article  Google Scholar 

  • Jansky HJ, Neumann V (1999) Preisentwicklung in der Bodendekontamination: wirtschaftliche und technische Rahmenbedingungen. TerraTech 2(99):25–29

    Google Scholar 

  • Kadiyala V, Nedeau LJ, Spain JC (2003) Construction of Escherichia coli strains for conversion of nitroacetophenones to ortho-aminophenols. Appl Environ Microbiol 69:6520–6626

    Article  Google Scholar 

  • Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripoca SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54

    Article  Google Scholar 

  • Khan H, Barna T, Harris RJ, Bruce NC, Barsukov I, Munro AW, Moody PCE, Scutton NS (2004) Atomic resolution structures and solution behaviour of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. J Biol Chem 29:30563–30672

    Article  Google Scholar 

  • Kim HJ, Song HG (2005) Purification and characterization of NAD(P)H dependent nitroreductase I from Klebsiella sp. C1 and enzymatic transformation of 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 68:766–773

    Article  Google Scholar 

  • Kim HY, Bennett GN, Song HG (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028

    Article  Google Scholar 

  • Klausmeier RE, Appleton JA, DuPre ES, Tenbarge K (2001) The enzymology of trinitrotoluene reduction. Int Biodeter Biodegrad 48:67–73

    Article  Google Scholar 

  • Klausmeier RE, Osmon JL, Walls DR (1973) The effect of trinitrotoluene on microorganisms. Dev Ind Microbiol 15:309–317

    Google Scholar 

  • Knox RJ, Burke PJ, Chen S, Kerr DJ (2003) CB 1954: from the Walker tumor to NQO2 and VDEPT. Curr Pharm Des 9:2091–2104

    Article  Google Scholar 

  • Koss G, Lommel A, Ollroge I, Tesseraux I, Haas R, Kappos AD (1989) Zur Toxikologie der Nitrotoluole und weiterer Nitroaromaten aus rüstungsbedingten Altlasten. Bundesgesundheitsblatt 32:527–536

    Google Scholar 

  • Kröger M, Schumacher ME, Risse H, Fels G (2004) Biological reduction of TNT as part of a combined biological-chemical procedure for mineralization. Biodegradation 15:241–248

    Article  Google Scholar 

  • Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutout S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39

    Article  Google Scholar 

  • Lei B, Liu M, Huanh S, Tu SC (1994) Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bact 176:3552–3558

    Google Scholar 

  • Lenke H, Achtnich C, Knackmus HJ (2000) Perspectives of bioelimination of polynitroaromatic compounds. In: Spain JC, Hughes JB, Knackmus HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, pp 91–126

    Google Scholar 

  • Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuß HJ (1998) Biological treatment of TNT-contaminated soil II: Biological induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971

    Article  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307

    Article  Google Scholar 

  • Maeda T, Kadokami K, Ogawa HI (2006) Characterization of 2,4,6-trinitrotoluene (TNT)-metabolizing bacteria isolated from TNT-polluted soils in the Yamada Green Zone, Kitakyushu. Japan J Environ Biotechnol 6:33–39

    Google Scholar 

  • Makris KC, Sarkarb D, Datta R (2010) Coupling indigenous biostimulation and phytoremediation for the restoration of 2,4,6-trinitrotoluene-contaminated sites. J Environ Monitor 2010:399–403

    Article  Google Scholar 

  • Millar RW, Arber AW, Endsor RM, Hamid J, Colclough ME (2011) Clean manufacture of 2,4,6-trinitrotoluene (TNT) via improved regioselectivity in the nitration of toluene. J Ener Mat 29:88–114

    Article  Google Scholar 

  • Montgomery MT, Coffin RB, Boyd TJ, Smith JP, Walker SE, Osburn CL (2011) 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments. Environ Poll 159:3673–3680

    Article  Google Scholar 

  • Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manag 98:51–55

    Article  Google Scholar 

  • Nokhbeh MR, Boroumandi S, Pokorny N, Koziarz P, Paterson ES, Lambert IB (2002) Identification and characterization of SnrA, and inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar typhymurium TA 1535. Mutat Res 508:59–70

    Article  Google Scholar 

  • Nyanhongo GS, Aichernig N, Ortner M, Steiner W, Guebitz GM (2009) Incorporation of 2,4,6-trinitrotoluene transforming bacteria into explosive formulations. J Hazard Mater 165:285–290

    Article  Google Scholar 

  • Nyanhongo GS, Rodríguez Couto S, Gübitz GM (2006) Coupling of 2,4,6-trinitrotoluene (TNT) metabolites onto humic monomers by a new laccase from Trametes modesta. Chemosphere 64:359–370

    Article  Google Scholar 

  • Oh BT, Sarath G, Shea PJ, Drijber RA, Comfort SD (2000) Rapid spectrophotometric determination of 2,4,6-trinitrotoluene in a Pseudomonas enzyme assay. J Microbiol Methods 42:149–158

    Article  Google Scholar 

  • Oh BT, Shea PJ, Drijber RA, Vasilyeva Gk, Sarath G (2003) TNT biotransformation and detoxification by a Pseudomonas aeruginosa strain. Biodegradation 14:309–319

    Article  Google Scholar 

  • Osmon JL, Klausmeier RE (1972) The microbial degradation of explosives. Dev Ind Microbiol 14:247–252

    Google Scholar 

  • Padda RS, Wang C, Hughes JB, Kutty R, Bennett GN (2003) Mutagenicity of nitroaromatic degradation compounds. Environ Toxicol Chem 22:2293–2297

    Article  Google Scholar 

  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750

    Article  Google Scholar 

  • Park C, Kim TH, Kim S, Kim SW, Lee J, Kim SH (2003) Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571

    Google Scholar 

  • Park HJ, Kreutzer R, Reiser CO, Sprinzl M (1992) Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli. Eur J Biochem 205:875–879

    Article  Google Scholar 

  • Park JS, In BH, Namkoong W (2012) Toxicological evaluation for bioremediation processes of TNT-contaminated soil by Salmonella mutagenicity assay. Korean J Chem Eng 29:1074–1080

    Article  Google Scholar 

  • Preuß J (1996) Alte Rüstungsstandorte -Erfassung und Bewertung von Umweltkontaminationen. Forschungsmagazin der Johannes-Gutenberg-Universität Mainz 1, pp 35–51

    Google Scholar 

  • Preuß J, Eitelberg F (1999) Hallschlag. ISBN 3-88250-045-X

    Google Scholar 

  • Ramos JL, Gonzales-Perez MM, Caballero A, van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281

    Article  Google Scholar 

  • Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransfomation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086

    Article  Google Scholar 

  • Reinhard S, Feldmann R (1998) Von der Forschung in die Praxis. Umweltmagazin 12(98):48

    Google Scholar 

  • Ribeiro EN, DaSilva FT, DePaiva TCB (2012) Ecotoxicological evaluation of wastewater from 2.4.6-TNT production. J Environ Sci Health Part A—Toxic/Hazard Substan Environ Eng 47:184–191

    Article  Google Scholar 

  • Riefler PG, Smets BF (2002) NAD(P)H: flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction. Appl Environ Microbiol 68:1690–1696

    Article  Google Scholar 

  • Robertson BK, Jjemba PK (2005) Enhanced bioavailibity of sorbed 2,4,6-trinitrotoluene (TNT) by a bacterial consortium. Chemosphere 58:263–270

    Article  Google Scholar 

  • Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Wat Res 35:2101–2111

    Article  Google Scholar 

  • Rosser SJ, Basran A, Travis ER, French CE, Bruce NC (2001) Microbial transformation of explosives. In: Laskin AI, Bennett JW, Gadd G (eds) Advances in Applied Microbiology Vol. 49, San Diego Academic Press, pp 1–35

    Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011) Biodegradation and transformation of explosives. Curr Opin Biotechnol 22:434–440

    Article  Google Scholar 

  • Sarlauskas J, Nerneikaite-Ceniene A, Anusevicius Z, Miseviciene L, Julvez MM, Medina M (2004) Flavoenzyme-catalysed redox cycling of hydroxylamino and amino metabolites of 2,4,6-trinitrotoluene: implications for their cytotoxicity. Arch Biochem Biophys 425:184–192

    Article  Google Scholar 

  • Scheibner K, Hofrichter M, Fritsche W (1997a) Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus Nematoloma frowardii. Biotechnol Lett 19:835–839

    Article  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997b) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  Google Scholar 

  • Schmidt TC, Steinbach K, von Löw E, Stork G (1998) Highly polar metabolites of nitroaromatic compounds in ammunition wastewater. Chemosphere 37:1079–1090

    Article  Google Scholar 

  • Schmitz M (1995) Vorversuche zur Sanierung des Rüstungsaltlastenstandortes Hallschlag. TerraTech 6(95):31–34

    Google Scholar 

  • Schneider K, Oltmanns J, Hassauer M, Schuhmacher US (2000) Ermittlung von Prüfwerten für ausgewählte rüstungsaltlastenspezifische Schadstoffe, 1998–1999. Im Auftrag des Umweltbundesamtes Berlin F + E-Vorhaben 298 76 251

    Google Scholar 

  • Schneider U (1989) Erfahrungen aus systematischen Untersuchungen von Standorten ehemaliger Rüstungsbetriebe. In: Der Niedersächsische Umweltminister (Hrsg). Expertengespräch Rüstungsaltlasten 25/26 April 1989 in Hannover, pp 261–279

    Google Scholar 

  • Schrader PS, Hess TF (2004) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT) in soil slurry. J Environ Qual 33:1202–1209

    Article  Google Scholar 

  • Sembries S, Crawford R (1997) Production of Clostridium bifermentans spores as inoculum for bioremediation of nitroaromatic contaminants. Appl Environ Microbiol 63:2100–2104

    Google Scholar 

  • Shin JH, Song HG (2009) Nitroreductase II involved in 2,4,6-trinitrotoluene degradation: purification and characterization from Klebsiella sp. C1. J Microbiol 47:536–541

    Article  Google Scholar 

  • Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–167

    Article  Google Scholar 

  • Singh SN, Tripathi RD (2006) Environmental bioremediation technologies. Springer, Berlin

    Google Scholar 

  • Solyanikova IP, Baskunov BP, Baboshin MA, Saralov AI, Golovleva LA (2012) Detoxification of high concentrations of trinitrotoluene by bacteria. Appl Biochem Microbiol 48:21–27

    Article  Google Scholar 

  • Sommerville C, Nishino S, Spain J (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bact 177:3837–3842

    Google Scholar 

  • Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton

    Google Scholar 

  • Spanggord RJ, Stewart KR, Riccio ES (1995) Mutagenicity of tetranitroazoxytoluenes: a preliminary screening in Salmonella typhimurium strains TA100 and TA100NR. Mutat Res 335:207–211

    Article  Google Scholar 

  • Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064

    Article  Google Scholar 

  • Strong PJ, Claus H (2011) Laccase: a review of its past and its future in bioremediation. Crit Rev Environ Sci Technol 41:373–434

    Article  Google Scholar 

  • Sunahara GI, Dodard S, Sarrazin M, Paquet L, Ampleman G, Thiboutot S, Hawari J, Renoux AY (1999) Ecotoxicological characterization of energetic substances using a soil extraction procedure. Ecotoxicol Environ Safety 43:138–148

    Article  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850

    Article  Google Scholar 

  • Thiele S, Fernandez E, Bollag JM (2002) Enzymatic transformation and binding of labeled 2,4,6-trinitrotoluene to humic substances during an anaerobic/aerobic incubation. J Environ Qual 31:437–444

    Article  Google Scholar 

  • Thomas H, Gerth A, Eulering B, Böhler A (2001) Neue Erkenntnisse zur biologischen in situ Sanierung TNT-kontaminierter Böden. TerraTech 2(01):52–54

    Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008a) Microbial and plant ecology of a long-term TNT-contaminated site. Environ Pollut 153:119–126

    Article  Google Scholar 

  • Travis ER, Bruce NC, Rosser SJ (2008b) Short term exposure to elevated trinitrotoluene concentrations induced structural and functional changes in the soil bacterial community. Environ Pollut 153:432–439

    Article  Google Scholar 

  • Ullah H, Shah AA, Hasan F, Hameed A (2010) Biodegradation of trinitrotoluene by immobilized Bacillus sp. YRE1. Pak J Bot 42:3357–3367

    Google Scholar 

  • Van Aken B, Agathos SN (2001) Biodegradation of nitro-substituted explosives by white-rot fungi: a mechanistic approach In: Laskin AI, Bennett JW, Gadd G (eds) Advances in applied microbiology Vol 49, San Diego Academic Press, pp 1–77

    Google Scholar 

  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252

    Google Scholar 

  • Wang CJ, Thiele S, Bollag JM (2002) Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes. Arch Environ Contam Toxicol 42:1–8

    Article  Google Scholar 

  • Wang ZY, Ye ZF, Zhang MH, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochem 45:993–1001

    Article  Google Scholar 

  • Weiss M, Geyer R, Gunther T, Kaestner M (2004a) 2,4,6-Trinitrotoluene mineralization and bacterial production rates of natural microbial assemblages from coastal sediments. Environ Tox Chem 23:2049–2060

    Article  Google Scholar 

  • Weiss M, Geyer R, Russow R, Richnow HH, Kastner M (2004b) Fate and metabolism of (N-15)2,4,6-trinitrotoluene in soil. Environ Tox Chem 23:1852–1860

    Article  Google Scholar 

  • Whiteway J, Koziarz P, Veall J, Sandhu N, Kumar P, Hoecher B, Lambert IB (1998) Oxygen-insensitive nitroreductases: analysis of the roles of nfsA and nfsB in development of resistance to 5-nitrofuran derivates in Escherichia coli. J Bact 180:5529–5539

    Google Scholar 

  • Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574

    Article  Google Scholar 

  • Wittich RM, Ramos JL, van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. Environ Sci Technol 43:2773–2776

    Article  Google Scholar 

  • Wujcik WJ, Lowe WL, Marks PJ (1992) Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater. Environ Prog 11:178–189

    Article  Google Scholar 

  • Zhao JS, Fournier D, Thiboutot S, Ampleman G, Hawari J (2004) Biodegradation and bioremediation of explosives. In: Singh A, Ward OP (eds) Soil Biology I. Applied Bioremediation and Phytoremediation, Springer-Verlag, pp 55–80

    Google Scholar 

  • Zhu B, Peng RH, Fu XY, Jin XF, Zhao W, Xu J, Han HJ, Gao JJ, Xu ZS, Bian L, Yao QH (2012) Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme. Plos One 7(7)e39861

    Google Scholar 

  • Ziganshin AM, Gerlach R, Naumenko EA, Naumova RP (2010) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology 79:178–183

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Claus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Claus, H. (2014). Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments. In: Singh, S. (eds) Biological Remediation of Explosive Residues. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01083-0_2

Download citation

Publish with us

Policies and ethics