Phytoremediation of TNT and RDX

  • Shree Nath SinghEmail author
  • Shweta Mishra
Part of the Environmental Science and Engineering book series (ESE)


Besides other organic contaminants, soil contamination by explosives also poses a serious environmental concern. Explosive compounds are released into the environment during manufacturing, handling and disposal operations at military sites to contaminate surface and ground waters, soils and sediments.


Switch Grass Hairy Root Culture Plant Growth Promote Rhizobacteria Hydroponic System Nitroaromatic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adrian NR, Arnett CM, Hickey RF (2003) Stimulating the anaerobic biodegradation of explosives by the addition of hydrogen or electron donors that produce hydrogen. Water Res 37:3499–3507CrossRefGoogle Scholar
  2. Amdur MO, Doull J, Klaassen C (eds) (1991) Casarett and Doull’s toxicology: the basic science of poisons, 4th edn. Pergamon Press, New YorkGoogle Scholar
  3. Bae B, Chang YY, Kwon YS, Kim SY (2004) Enhanced degradation of 2,4,6-trinitrotoluene (TNT) in a soil column planted with Indian Mallow (Abuliton avicennae). J Biosci Bioeng 97(2):99–103Google Scholar
  4. Best EP, Tatem HE, Geter KN, Wells ML, Lane BK (2004) Toxicity and metabolites of 2,4,6-trinitrotoluene TNT in plants and worms from exposure to aged soil. ERDC/EL TR-04-18, U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, Sept 2004Google Scholar
  5. Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361CrossRefGoogle Scholar
  6. Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264CrossRefGoogle Scholar
  7. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas-Maltophilia Pb1. Appl Environ Microbiol 61:1318–1322Google Scholar
  8. Brentner LB, Mukherji ST, Merchie KM, Yoon JM, Schnoor JL, Van Aken B (2008) Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT). Chemosphere 73(5):657–662CrossRefGoogle Scholar
  9. Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization ofhexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2, 4, 6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475CrossRefGoogle Scholar
  10. Briggs GG, Bromilow RH, Evans AA (1982) Relationships between lipophilicity and root uptake and translocation of non-ionised chemicals by barley. Pestic Sci, pp 495–504Google Scholar
  11. Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125Google Scholar
  12. Bryant DW, McCalla DR, Leelsma M, Laneuville P (1981) TypeI nitroreductases of Escherichia coli. Can J Microbiol 27:81–86CrossRefGoogle Scholar
  13. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31:1399–1406CrossRefGoogle Scholar
  14. Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain J, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, pp 239–275Google Scholar
  15. Campbell R, Greaves M (1990) Anatomy and community structure of the rhizosphere. In: Lynch J (ed) The rhizosphere. Wiley, Chichester, pp 11–34Google Scholar
  16. Chekol T, Vough LR, Chaney RL (2002) Plant-soil-contaminant specificity affects phytoremediation of organic contaminants. Int J Phytorem 4:17–26CrossRefGoogle Scholar
  17. Darrach MR, Chutjian A, Plett GA (1998) Trace explosives signatures from World War II unexploded undersea ordnance. Environ Sci Technol 32:1354–1358CrossRefGoogle Scholar
  18. Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of Urea. Environ Pollut 158(5):1980–1983CrossRefGoogle Scholar
  19. Dave G (2003) Field test of ammunition (TNT) dumping in the ocean. In: Munawar M (ed) Quality assessment and management: insight and progress. Aquatic Ecosystem Health and Management Society, Washington, DC, pp 213–220Google Scholar
  20. Dec J, Bollag J-M (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44:1132–1139CrossRefGoogle Scholar
  21. Ek H, Dave G, Nilsson E, Sturve J, Birgersson G (2006) Fate and effects of 2,4,6-trinitrotoluene (TNT) from dumped ammunition in a field study with fish and invertebrates. Arch Environ Contam Toxicol 51:244–252CrossRefGoogle Scholar
  22. Esteve-Núñez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  23. Etnier EL (1989) Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Regul Toxicol Pharmacolol 9:147–157CrossRefGoogle Scholar
  24. Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56:963–974CrossRefGoogle Scholar
  25. Glick BR (2003) Phytoremediati on: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21(5):383–393CrossRefGoogle Scholar
  26. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172CrossRefGoogle Scholar
  27. Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Critic Rev Plant Sci 21:511–538CrossRefGoogle Scholar
  28. Harvey SD, Fellows RJ, Cataldo DA, Bean RJ (1991) Fate of the explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and 164 bioaccumulation in bush bean hydroponics plants. Environ Toxicol Chem 10:845–855CrossRefGoogle Scholar
  29. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54(5):605–618CrossRefGoogle Scholar
  30. Hewitt AD, Jenkins TF, Walsh ME, Walsh MR, Bigl SR, Ramsey CA (2007) Protocols for collection of surface soil samples at military training and testing ranges for the characterization of energetic munitions constituents (vol ERDC/CRREL TR-07-10). U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, NHGoogle Scholar
  31. Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271CrossRefGoogle Scholar
  32. Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Nat Acad Sci 104:16822–16827CrossRefGoogle Scholar
  33. Jiamjitrpanich W, Parkpian P, Polprasert C, Kosanlvit R (2012) Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent ion. In: 2nd International conference on environment and industrial innovation. IPCBEE, vol 35, IACSIT Press, SingaporeGoogle Scholar
  34. Just CL, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary grass. Environ Sci Technol 38:290–295CrossRefGoogle Scholar
  35. Kalderis D, Juhasz AL, Boopathy R, Comfort S (2011) Soils contaminated with explosives: environmental fate and evaluation of state of the art remediation processes (IUPAC Technical Report). Pure Appl Chem 83(7):1407–1484CrossRefGoogle Scholar
  36. Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficaial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15CrossRefGoogle Scholar
  37. Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39CrossRefGoogle Scholar
  38. Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenek S (2012) Molasses enhanced phyto- and bio-remediation treatability study of explosives contaminated Hawaiian soils. J Hazard Mater 243:334–339CrossRefGoogle Scholar
  39. Larson SL (1997) Fate of explosive contaminants in plants. Ann New York Acad Sci 829:195–201CrossRefGoogle Scholar
  40. Larson SL, Jones RP, Escalon L, Parker D (1999) Classification of explosives transformation products in plant tissues. Environ Toxicol Chem 18:1270–1276CrossRefGoogle Scholar
  41. Lee I, Baek K, Kim H, Kim S, Kwon Y, Chang Y, Bae B (2007) Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J Environ Sci Health, Part A 42:2009–2045CrossRefGoogle Scholar
  42. Lotufo GR, Nipper M, Carr RS, Conder JM (2009) Fate and toxicity of explosives in sediments. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, pp 117–134CrossRefGoogle Scholar
  43. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  44. Mackova M, Dowling D, Macek T (2006) Phytoremediation rhizoremediation. Springer, New York, pp 300Google Scholar
  45. Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007) High uptake of 2,4,6-trinitrotoluene by vetiver grass- potential for phytoremediation? Environ Pollut 146:1–4CrossRefGoogle Scholar
  46. McFarlane JC, Pfleeger T, Fletcher JS (1990) Effect, uptake and disposition of nitrobenzene in several terrestrial plants. J Environ Toxicol Chem 9:513–520Google Scholar
  47. Meyers SK, Deng S, Basta NT, Clarkson WW, Wilber GG (2007) Long-term explosive contamination in soil: effects on soil microbial community and bioremediation. Soil Sediment Contam 16:61–77CrossRefGoogle Scholar
  48. Mezzari MP et al (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds: a phytoremediation approach. Plant Physiol 138:858–869CrossRefGoogle Scholar
  49. Morant M, Bak S, Moller BL, Werck-Reichhart D (2003) Plant chromosomes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 14:151–162CrossRefGoogle Scholar
  50. Nelson LS (2001) Phytoremediation of TNT-contaminated water by the submerged aquatic macrophyte Potamogeton pectinates. Ph.D. Theses and DissertationsGoogle Scholar
  51. Ouyang Y, Shinde D, Ma LQ (2005) Simulation of a TNT-contaminated soil using the CTSPAC model. J Environ Qual 34:1490–1496CrossRefGoogle Scholar
  52. Ouyang Y, Huang CH, Huang DY, Lin D, Cui L (2007) Simulating uptake and transport of TNT by plants using stella. Chemosphere 69:1245–1252CrossRefGoogle Scholar
  53. Palazzo AJ, Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15:49–52CrossRefGoogle Scholar
  54. Paquin DG, Campbell S, Li QX (2004) Phytoremediation in subtropical Hawii-A review of over 100 plant species. Wiley Periodicals Inc., New JerseyGoogle Scholar
  55. Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17:2266–2273Google Scholar
  56. Preuss A, Rieger PG (1995) Biodegradation of nitroaromatic compounds. Plenum Press, New YorkGoogle Scholar
  57. Price RA, Pennington JC, Larson SL, Neumann D, Hayes CA (2002) Uptake of RDX and TNT by agronomic plants. Soil Sediment Contam 11:307–326CrossRefGoogle Scholar
  58. Rajkumar M, Prasad MNV, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130CrossRefGoogle Scholar
  59. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavy-metal phytoextraction. Trends Biotechnol 28(3):142–149CrossRefGoogle Scholar
  60. Reynolds CM, Newman L, Ferry J (2006) Fate of plant tissue associated RDX in surface soil: SERDP ER-1412 Annual Report for 2005. ERDC/CRREL LR-06-4. SERDP/ESTCP Environmental Restoration Program, Arlington, VAGoogle Scholar
  61. Rodacy PJ, Waker PK, Reber SD, Phelan J, Andre JV (2000) Explosive detection in the marine environment and on land using ion mobility spectroscopy. A summary of field tests. Sandia Report SAND2000-0921. Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  62. Ross RH, Hartley WR (1990) Comparison of water quality criteria and health advisories for 2,4,6-trinitrotoluene (TNT). Regul Toxicol Pharmacol 11:114–117CrossRefGoogle Scholar
  63. Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81CrossRefGoogle Scholar
  64. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nature Biotechnol 24:216–219CrossRefGoogle Scholar
  65. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  66. Sandermann H (1994) Higher-plant metabolism of xenobiotics: the Green Liver concept. Pharmacogenetics 4:225–241CrossRefGoogle Scholar
  67. Schneider K, Oltmanns J, Radenberg T, Schneider T, PaulyMundegar D (1996) Uptake of nitroaromatic compounds in plants: implications for risk assessment of ammunition sites. Environ Sci Pollut Res 3(3):135–138CrossRefGoogle Scholar
  68. Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Amp Technol 29(7):A318–A323Google Scholar
  69. Schnoor JL, Van Aken B, Brentner LB, Tanaka S, Flokstra B, Yoon JM (2006) Identification of metabolic routes and catabolic enzymes involved in phytoremediation of the nitrosubstituted explosives TNT, RDX, and HMX Final Technical Report. SERDP Project Number CU1317Google Scholar
  70. Sens C, Sheidemann P, Werner D (1999) The distribution of 14CTNT in different biochemical compartments of the monocotyledoneous Triticum aestivum. Environ Pollut 104:113–119CrossRefGoogle Scholar
  71. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771CrossRefGoogle Scholar
  72. Sikora FJ, Behrends LL, Phillips WD, Coonrod HS, Bailey E, Bader DF (1997) A microcosm study on remediation of explosives-contaminated groundwater using constructed wetlands. NY Acad Sci 829:202–218CrossRefGoogle Scholar
  73. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555CrossRefGoogle Scholar
  74. Subramanian M (2004) TNT phytotransformation in native and genetically modified species: significance of aromatic hydroxylamines in the metabolic pathway. PhD Thesis, Iowa State UniversityGoogle Scholar
  75. Subramanian M, Shanks JV (2003) In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New YorkGoogle Scholar
  76. Subramanian M et al (2005) TNT phytotransformation pathway characteristics in Arabidopsis: role of aromatic hydroxylamines. Biotechnology Progress (in press)Google Scholar
  77. Sunahara GI, Lotufo L, Kuperman RK, Hawari J (eds) (2009) Ecotoxicology of explosives. CRC Press, New York, p 325Google Scholar
  78. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18(5):647–658CrossRefGoogle Scholar
  79. Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munitions compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156CrossRefGoogle Scholar
  80. Thompson PL, Ramer LA, Schnoor JL (1998) Uptake and transformation of TNT by hybrid poplar trees. Environ Sci Technol 32:975–980CrossRefGoogle Scholar
  81. Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284CrossRefGoogle Scholar
  82. USEPA (2004) Radionuclide Biological Remediation Resource Guide, EPA 905-B-04-001. August.
  83. United States Environmental Protection Agency (2011a) Emerging Contaminants hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) Fact Sheet. Office of Solid Waste and Emergency Response (5106P). EPA 505-F-10-009Google Scholar
  84. Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol. doi: 10.1016/j.copbio.2009.01.011 Google Scholar
  85. Van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and Mineralization of Hexahydro-1,3,5-trinitro-1,3,5-triazine Inside Poplar Tissues (Populus deltoides x nigra DN-34). Environ Sci Technol 38(23):4572–4579CrossRefGoogle Scholar
  86. Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383CrossRefGoogle Scholar
  87. Van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410CrossRefGoogle Scholar
  88. Vancura V, Hovadik A (1965) Root exudates of plants. II. Composition of root exudates of some vegetables. Plant Soil 22:21–32CrossRefGoogle Scholar
  89. Vanek T, Nepovim A, Podipna R, Hebner A, Vavrikova Z, Gerth A, Thomas H, Smreck S (2006) Phytoremediation of explosives in toxic wastes. Soil and water pollution monitoring protection and remediation, pp 3–23Google Scholar
  90. Vila M, Pascal-Lorber S, Rathahao E, Debrauwer L, Canlet C, Laurent F (2005) Metabolism of C-14-2,4,6-trinitrotoluene in tobacco cell suspension cultures. Environ Sci Technol 39:663–672CrossRefGoogle Scholar
  91. Vila M, Lorber-Pascal S, Laurent F (2007a) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154CrossRefGoogle Scholar
  92. Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007b) Phytotoxicity to and uptake of RDX by rice. Environ Pollut 145:813–817CrossRefGoogle Scholar
  93. Wang C et al (2003) Role of hydroxylamine intermediates in the phytotransformation of 2,4,6-trinitrotoluene by Myriophyllum aquaticum. Environ Sci Technol 37:3595–3600CrossRefGoogle Scholar
  94. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  95. Williams RE, Rathbone DA, Moody PC, Scrutton NS, Bruce NC (2001) Degradation of explosives by nitrate ester reductases. Biochem Soc Symp 68(68):143–153Google Scholar
  96. Wolfe NL, Ou TY, Carriers L, Gunnison D (1994) Alternative methods for biological destruction. Technical report IRRP-93-3, U.S. Army Crops of Engineers water ways Experimental Station. Vicksburg, MississsippiGoogle Scholar
  97. Yang H (2010) Enhanced rhizodegradation of munitions explosives and degradates by selected native Gram species. ThesisGoogle Scholar
  98. Yoon JM, Oliver DJ, Shanks JV (2005) Plant transformation pathways of energetic materials (RDX, TNT, DNTs). In: Eaglesham A, Bessin R, Trigiano R, Hardy RWT (eds) Agricultural biotechnology: beyond food and energy to health and the environment. National Agricultural Biotechnology Council Report 17. National Agricultural Biotechnology Council, Ithaca, NY, USA, pp 105–116Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations