In Situ Degradation and Remediation of Energetics TNT, RDX, HMX, and CL-20 and a Byproduct NDMA in the Sub-Surface Environment

  • Jim E. SzecsodyEmail author
  • Steve Comfort
  • Herb L. Fredrickson
  • Robert E. Riley
  • Fiona Crocker
  • Patrick Shea
  • Jim P. McKinley
  • Amy P. Gamerdinger
  • Hardiljeet K. Boparai
  • Don C. Girvin
  • Jessa V. Moser
  • Karen Thompson
  • Tom Resch
  • Brooks J. DeVary
  • Lisa Durkin
  • Andrew T. Breshears
Part of the Environmental Science and Engineering book series (ESE)


Energetics such as RDX, HMX, and CL-20 exhibit low sorption and natural degradation, resulting in widespread groundwater contamination. Alternatively, TNT exhibits strong sorption and degrades to toxic recalcitrant intermediates. Field scale abiotic, biotic, and coupled abiotic/bioremediation can be more cost effective than pump and treat or sediment removal, but rates of processes in relevant insitu conditions need to be understood.


Degradation Rate Ferrous Iron Mineralization Rate Energetic Compound Valent Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Achtnich C, Sieglen U, Knackmuss H, Lenke H (1999) Irreversible binding of biologically reduced 2,4,6-trinitrotoluene to soil. Env Toxicol Chem 18(11):2416–2423CrossRefGoogle Scholar
  2. Adam M, Comfort S, Zhang T, Morley M (2005) Evaluating biodegradation as a primary and secondary treatment for removing RDX from a perched aquifer. J Haz Mat 9(1):9–19Google Scholar
  3. Agrawal A, Tratnyek P (1996) Reduction of nitroaromatic compounds by zero-valent iron metal. Environ Sci Technol 30:153–160CrossRefGoogle Scholar
  4. Amonette J, Workman D, Kennedy D, Fruchter J, Gorby Y (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34:4606–4613CrossRefGoogle Scholar
  5. Arienzo M, Gan J, Ernst F, Qin S, Bondarenko S, Sedlak D (2006) Loss pathways of N-nitrosodimethylamine (NDMA) in turfgrass soils. J Environ Qual 35:285–292CrossRefGoogle Scholar
  6. Autenrieth RL, Jankowski MD, Bonner JS, Kodikanti M (1999) Optimizing the biotransformation of RDX and HMX. In: Alleman and Leeson (eds) In Situ and On-Site Bioremediation, Battelle Press, Columbus, OH, vol 5(7), pp 21–26Google Scholar
  7. Balko BA, Tratnyek PG (1998) Photoeffects on the reduction of carbon tetrachloride by zero-valent iron. J Physic Chem B 102(8):1459–1465CrossRefGoogle Scholar
  8. Bell L, Devlin J, Gillham R, Benning P (2003) A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene. J Contam Hydrol 66(3–4):201–217CrossRefGoogle Scholar
  9. Bhushan B, Paquet L, Spain JC, Hawari J (2003a) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying pseudomonas sp strain FA1. Appl Env Microbiol 69:5216–5221CrossRefGoogle Scholar
  10. Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J (2003b) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: Insight into the mechanism of RDX biodegradation by Rhodococcus sp strain DN22. Appl Environ Microbiol 69:1347–1351CrossRefGoogle Scholar
  11. Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by stenotrophomonas maltophilia PB1. Appl Env Microbiol 61(4):1318–1322Google Scholar
  12. Blowes DW, Ptacek CJ, Jambor JL (1997) In situ remediation of Cr(VI)-contaminated ground water using permeable reactive walls: Laboratory studies. Environ Sci Technol 31(12):3348–3357CrossRefGoogle Scholar
  13. Boopathy R, Kulpa CF, Manning J, Montemagno CD (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by co-metabolism with various co-substrates: A laboratory-scale study. Biores Technol 47:205–208CrossRefGoogle Scholar
  14. Boparai H, Shea P, Comfort S, Snow D (2006) Dechlorinating chloroacetanilide herbicides by dithionite-treated aquifer sediment and surface soil. Environ Sci Technol 40(6):3043–3049CrossRefGoogle Scholar
  15. Boparai H, Comfort S, Shea P, Satapanajaru T, Szecsody J, Grossl P (2010) Degradation of high explosives with Fe(II) and freshly precipitated iron. Chemosphere 865–872Google Scholar
  16. Bradley PM, Carr SA, Baird RB, Chapelle FH (2005) Biodegradation of N-nitrosodimethylamine in soil from a water reclamation facility. Biorem J 9:115–120CrossRefGoogle Scholar
  17. Brannon JM, Adrian DD, Pennington JC (1992) Slow Release of PCB, TNT, and RDX from Soils and Sediments, Vicksburg, MS. U.S. Army Engineer Research and Development Center, Waterways Experiment StationGoogle Scholar
  18. Bruns-Nagel D, Drzyzga O, Steinbach K, Schmidt TC, Low EV, Gorontzy T, Blotevogel KH, Gemsa D (1998) Anaerobic/aerobic composting of 2,4,6-trinitrotoluene-contaminated soil in a reactor system. Environ Sci Technol 32:1676–1679CrossRefGoogle Scholar
  19. Buckley L, Morgan K, Swenberg J, James R (1985) Toxicity of dimethylamine in F-344 rates and B6C3F1 mice following a 1-year inhalation exposure. Fundam Appl Toxicol 5(2):341–352CrossRefGoogle Scholar
  20. Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium (VI) reduction by iron (III). Environ Sci Technol 31:1426–1432CrossRefGoogle Scholar
  21. Chao TT, Zhou L (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. Soil Sci Soc Am J 47:225–232CrossRefGoogle Scholar
  22. Chilakapati A, Williams M, Yabusaki S, Cole C (2000) Optimal design of an in situ Fe(II) barrier: Transport limited reoxidation. Environ Sci Technol 34(24):5215–5221CrossRefGoogle Scholar
  23. Coleman N, Nelson D, Duxbury T (1998) Aerobic biodegradation of RDX as a nitrogen source by a Rhodococcus sp strain DN22. Soil Biol Biochem 30(8/9):1159–1167CrossRefGoogle Scholar
  24. Comfort SD, Shea PJ, Hundal LS, Li Z, Woodbury BL, Martin JL, Powers WL (1995) TNT transport and fate in contaminated soil. J Environ Qual 24:1174–1182CrossRefGoogle Scholar
  25. Crocker F, Thompson K, Szecsody J, Fredrickson H (2005) Biotic and abiotic degradation of hexanitrohexaazaisowurtzitane (CL-20) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soils. J Environ Qual 34:2208–2216CrossRefGoogle Scholar
  26. Daun G, Lenke H, Ruess M, Knackmuss H (1998) Biological treatment of TNT-contaminated soil. 1. anaerobic cometabolic reduction and interaction of TNT and metabolites with soil components. Environ Sci Technol 32:1956–1963CrossRefGoogle Scholar
  27. Eary LE, Rai D (1988) Chromate removal from aqueous wastes by reduction with ferrous ion. Environ Sci Technol 22(8):972–977CrossRefGoogle Scholar
  28. Elovitz M, Webber E (1999) Sediment-mediated reduction of 2,4,6-trinitrotoluene and fate of the resulting aromatic (poly)amines. Environ Sci Technol 33:2617–2625CrossRefGoogle Scholar
  29. Fournier D, Hawari J, Streger SH, McClay K, Hatzinger PB (2006) Biotransformation of N-Nitrosodimethylamine by Pseudomonas mendocina KR1. Appl Environ Microbiol 72:6693–6698CrossRefGoogle Scholar
  30. Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol 38(7):33–40CrossRefGoogle Scholar
  31. Fruchter J, Cole C, Williams M, Vermeul V, Amonette J, Szecsody J, Istok J, Humphrey M (2000) Creation of a subsurface permeable treatment barrier using in situ redox manipulation. Ground Water Monitor Rem 20:66–77Google Scholar
  32. Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177Google Scholar
  33. Genin J, Bourrie G, Trolard F (1998) Thermodynamic equilibria in aqueous suspensions of synthetic and natural green rusts: Occurrences of the mineral in hydromorphic soils. Environ Sci Technol 32(8):1058–1068CrossRefGoogle Scholar
  34. Gregory KB, Larese-Casanova P, Parkin GF, Scherer MM (2004) Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine by FeFeII bound to magnetite. Environ Sci Technol 38:1408–1414CrossRefGoogle Scholar
  35. Gui L, Gillham R, Odziemkowski M (2000) Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 1. Pathways and kinetics. Environ Sci Technol 34(16):3489–3494CrossRefGoogle Scholar
  36. Gunnison D, Zappi ME, Teeter C, Pennington JC, Bajpai R (2000) Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat groundwater remediation system. J Haz Mat B73:179–197CrossRefGoogle Scholar
  37. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ Sci Technol 30(2):612–622CrossRefGoogle Scholar
  38. Haderlein SB, Hofstetter TB, Schwarzenbach RP (2000) Subsurface chemistry of nitroaromatic compounds. In: Spain J, Hughes J, Knackmuss I (eds) Biodegradation of Nitroaromatic Compounds and Explosives. CRC Press, Boca RatonGoogle Scholar
  39. Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol 36:633–638CrossRefGoogle Scholar
  40. Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In: Spain JC, Hughes JB, Knackmuss H (eds) Biodegradation of Nitroaromatic Compounds and Explosives. Lewis Publishers, Boca RatonGoogle Scholar
  41. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  42. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657CrossRefGoogle Scholar
  43. Hawari J, Halasz A, Groom C, Deschamps S, Paquet L, Beaulieu C (2002) Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp. Environ Sci Technol 36(23):5117–5123CrossRefGoogle Scholar
  44. Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A (2004) Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate. Water Res 38:4055–4064CrossRefGoogle Scholar
  45. Heijman C, Grieder E, Holligern C, Schwarzenbach R (1995) Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environ Sci Technol 29:775–783CrossRefGoogle Scholar
  46. Heilmann HM, Wiesmann U, Stenstrom MK (1996) Kinetics of the alkaline hydrolysis of high explosives rdx and hmx in aqueous solution and adsorbed to activated carbon. Environ Sci Technol 30:1485–1492CrossRefGoogle Scholar
  47. Heron G, Crouzet C, Bourg AC, Christensen TH (1994) Speciation of Fe(II) and Fe(III) in contaminated aquifer sediments using chemical extraction techniques. Environ Sci Technol 28:1698–1705CrossRefGoogle Scholar
  48. Hofstetter TB, Heijman CG, Halderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of tnt and other polynitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol 33(9):1479–1487CrossRefGoogle Scholar
  49. Hofstetter TB, Schwarzenbach RP, Halderlein SP (2003) Reactivity of Fe(II) species associated with clay minerals. Environ Sci Technol 37(3):519–528CrossRefGoogle Scholar
  50. Holtz E, Ornellas D, Foltz M, Clarkson J (1994) The solubility of CL-20 in selected materials. Propellants, Explos, Pyrotech 19:206–212CrossRefGoogle Scholar
  51. Jenkins T, Bartolini C, Ranney T (2003) Stability of CL-20, TNAZ, HMX, RDX, NG, and PETN in Moist, unsaturated soil. US Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, ERDC/CREEL TR-03-7Google Scholar
  52. Johnson TL, Fish W, Gorby YA, Tratnyek (1998) Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface. J Contam Hydrol 29:379–398CrossRefGoogle Scholar
  53. Kaplan DL, Kaplan AM (1985) Biodegradation of N-nitrosodimethylamine in aqueous and soil systems. Appl Environ Microbiol 50:1077–1086Google Scholar
  54. Karickhoff S (1984) Organic pollutant sorption in aquatic systems. J Hyd Eng 110:707–733CrossRefGoogle Scholar
  55. Karickhoff S, Browh D, Scott T (1979) Sorption of hydrophobic pollutants on natural sediments. Water Resour Res 13:241–248CrossRefGoogle Scholar
  56. Klausen J, Trober SP, Haderlein SB, Schwarzenbach RP (1995) Reduction of substituted nitrobenzenes by iron(II) in aqueous mineral suspensions. Environ Sci Technol 29(9):2396–2404CrossRefGoogle Scholar
  57. Lenke H, Warrelmann J, Daun G, Hund K, Sieglen U, Walter U, Knackmuss H (1998) Biological treatment of TNT-contaminated soil. 2. biologically induced immobilization of the contaminants and full-scale application. Environ Sci Technol 32:1964–1971CrossRefGoogle Scholar
  58. Lopez M, Alvarez M, Miranda A, Blanco P (1996) Determination of dimethylamine in groundwater by liquid chromatography and precolumn derivatization with 9-fluorenylmethylchloroformate. J Chromatograph 721(2):231–239CrossRefGoogle Scholar
  59. McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958Google Scholar
  60. McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Env Microbiol 42(5):817–823Google Scholar
  61. Mitch WA, Sharp JO, Trussell RR, Valentine RL, Alvarez-Cohen L, Sedlak DL (2003) N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ Eng Sci 20:389–404CrossRefGoogle Scholar
  62. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX. J Chromatogr A 1025:125–132CrossRefGoogle Scholar
  63. Morkin M, Devlin J, Barker J, Butler B (2000) In situ sequential treatment of a mixed contaminant plume. J Contam Hydrol 45(3–4):283–302CrossRefGoogle Scholar
  64. Nedelko VV, Chukanov NV, Raevskii AV, Korsounskii BL (2000) Comparative investigation of thermal decomposition of modifications of CL-20. Propellants Explos Pyrotech 25:(5)255–259Google Scholar
  65. Nielsen A, Chafin A, Christian S, Moore D, Nadler M, Nissan R, Vanderah D (1998) Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 54:11793–11812Google Scholar
  66. Nielson AT, Chan M, Kraeutle K, Lowe-Ma C, Hollins R, Nadler M, Norris W, Vanderah D, Yee R (1989) Polynitropolyaza Caged Explosives Part 7 (U). Naval Weapons Center, China LakeGoogle Scholar
  67. Nielson AT, Vanderah D, Nadler M, Yee R (1994) Polynitropolyaza Caged Explosives Part 8 (U). Naval Air Warfare Center Weapons Division, China LakeGoogle Scholar
  68. Odziemkowski M, Gui L, Gillham R (2000) Reduction of N-nitrosodimethylamine with granular iron and nickel-enhanced iron. 2. Mechanistic Studies. Environ Sci Technol 34(16):3495–3500CrossRefGoogle Scholar
  69. Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surfce-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36(8):1734–1741CrossRefGoogle Scholar
  70. Ronen Z, Brenner A, Abeliovich A (1998) Biodegradation of RDX-contaminated wastes in a nitrogen-deficient environment. Water Sci Technol 38:9–22Google Scholar
  71. Sharp JO, Wood TK, Alvarez-Cohen L (2005) Aerobic biodegradation of N-nitrosodimethylamine (NDMA) by axenic bacterial strains. Biotechnol Bioeng 89:608–618CrossRefGoogle Scholar
  72. Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monoxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 73:6930–6938CrossRefGoogle Scholar
  73. Sheremata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus phanerochaetre chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34(16):3384–3388CrossRefGoogle Scholar
  74. Singh J, Comfort SD, Shea PJ (1998a) Long-term RDX sorption and fate in soil. J Environ Qual 27:572–577CrossRefGoogle Scholar
  75. Singh J, Comfort SD, Shea PJ (1998b) Remediating RDX-contaminated water and soil using zero-valent iron. J Environ Qual 27:1240–1245CrossRefGoogle Scholar
  76. Singh J, Comfort SD, Shea PJ (1999) Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environ Sci Technol 33:1488–1494CrossRefGoogle Scholar
  77. Spalding RF, Fulton JW (1988) Groundwater munition-residues and nitrate near Grand Island, Nebraska, USA. J Contaminant Hydrol 2:139–153CrossRefGoogle Scholar
  78. Stucki JW, Golden DC, Roth CB (1984) Preparation and handling of dithionite-reduced smectite suspensions. Clays Clay Minerals 32(3):191–197CrossRefGoogle Scholar
  79. Szecsody JE, Fruchter JS, Sklarew DS, Evans JC (2000) In situ redox manipulation of subsurface sediments from Fort Lewis, Washington: Iron reduction and TCE dechlorination mechanisms. PNNL-13178, Pacific Northwest National Laboratories, Richland, WashingtonGoogle Scholar
  80. Szecsody J, Fruchter J, McKinley M, Gilmore T (2001) Feasibility of In Situ Redox Manipulation for RDX Remediation in Pantex Sediments. PNNL-13746, Pacific Northwest National Laboratory, Richland, WashingtonGoogle Scholar
  81. Szecsody J, Girvin D, Campbell J, Devary B (2004a) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56:593–610CrossRefGoogle Scholar
  82. Szecsody J, Williams M, Fruchter J, Vermeul V, Sklarew D (2004b) In situ reduction of aquifer sediments: Enhancement of reactive iron phases and TCE dechlorination. Environ Sci Technol 38:4656–4663CrossRefGoogle Scholar
  83. Szecsody J, Fruchter J, Vermeul VR, Williams M, Devary B (2005a) In situ reduction of aquifer sediments to create a permeable reactive barrier to remediate chromate: bench-scale tests to determine barrier longevity. Chapter 9. In: Jacobs J (ed) Groundwater Remediation of Chromate. CRC Press, Boca RatonGoogle Scholar
  84. Szecsody JE, Phillips JL, Vermeul VR, Fruchter JS, Williams MD (2005b) Influence of nitrate on the hanford 100d area in situ redox manipulation barrier longevity. PNNL-15262, Pacific Northwest National Laboratory, Richland, WashingtonGoogle Scholar
  85. Szecsody J, Riley R, Devary B, Girvin D, Resch T, Campbell J, Fredrickson H, Thompson K, Crocker F, Qasim M, Gamerdinger A, Lemond L (2005c) Factors effecting the fate and transport of CL-20 in the vadose zone and groundwater: Final report 2002-2004. PNL-15245Google Scholar
  86. Szecsody JE, Comfort S, Fredrickson HL, Boparai HK, Devary BJ, Thompson KT, Phillips JL, Crocker F, Girvin DC, Resch CT, Shea P, Fischer A, Durkin L (2007) SERDP ER-1376 enhancement of In Situ bioremediation of energetic compounds by coupled abiotic/biotic processes: final report for 2004–2006. PNNL-16754, Pacific Northwest National Laboratory, Richland, WashingtonGoogle Scholar
  87. Szecsody J, McKinley J, Breshears A, Crocker F (2008) Abiotic/biotic degradation and mineralization of N-nitrosodimethylamine in aquifer sediments. Remediation 19(1):109–123CrossRefGoogle Scholar
  88. Tratnyek PG, Macalady DL (1989) Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems. J Agric Food Chem 37(1):248–254CrossRefGoogle Scholar
  89. Tratnyek PG, Johnson RL, Lowry Gregory V, Brown RA (2013) In situ chemical reduction (ISCR). In: Kueper BH, Stroo JF, Ward CH (eds) Chlorinated solvent source zone remediation, Springer, New York, SERDP and ESTCP Remediation Technology Monograph Series (in press)Google Scholar
  90. Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol 69:1871–1874CrossRefGoogle Scholar
  91. Vermeul VR, Williams MD, Szecsody JE, Fruchter JS, Cole CR, Amonette JE (2002) Creation of a subsurface. In: Groundwater remediation of trace metals, radionuclides, and nutrients, with permeable reactive barriers. In: Naftz DL, Morrison SJ, Davis JA, Fuller CC (eds) Academic Press, LondonGoogle Scholar
  92. Vermeul VR, Szecsody JE, Truex MJ, Burns CA, Girvin DC, Phillips JL, Devary BD, Fischer AE, Li SMW (2006) Treatability Study of In Situ Technologies for Remediation of Hexavalent Chromium in Groundwater at the Puchack Well Field Superfund Site, New Jersey. PNNL-16194, Pacific Northwest National Laboratory, Richland, WashingtonGoogle Scholar
  93. Waisner S, Hansen L, Fredrickson H, Nestler C, Zappi M, Banerji S, Bajpai R (2002) Biodegradation of RDX within soil-water slurries using a combination of differing redox incubation conditions. J Haz Mat 95(1–2):91–106CrossRefGoogle Scholar
  94. Weiss J, McKay A, Derito C, Watanabe C, Thorn K, Madsen E (2004) Development and application of pyrolysis gas chromatography/mass spectrometry for the analysis of bound trinitrotoluene residues in soil. Environ Sci Technol 38:2167–2174CrossRefGoogle Scholar
  95. Wildman MJ, Alvarez P (2001) RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Sci Technol 43:25–33Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jim E. Szecsody
    • 1
    Email author
  • Steve Comfort
    • 2
  • Herb L. Fredrickson
    • 3
  • Robert E. Riley
    • 1
  • Fiona Crocker
    • 3
  • Patrick Shea
    • 2
  • Jim P. McKinley
    • 1
  • Amy P. Gamerdinger
    • 1
  • Hardiljeet K. Boparai
    • 2
  • Don C. Girvin
    • 1
  • Jessa V. Moser
    • 1
  • Karen Thompson
    • 3
  • Tom Resch
    • 1
  • Brooks J. DeVary
    • 1
  • Lisa Durkin
    • 1
  • Andrew T. Breshears
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.School of Natural ResourcesUniversity of NebraskaLincolnUSA
  3. 3.Environmental Laboratory at Waterways Experiment StationVicksburgUSA

Personalised recommendations