Pathways of 2,4,6-Trinitrotoluene Transformation by Aerobic Yeasts

  • Ayrat M. ZiganshinEmail author
  • Robin Gerlach
Part of the Environmental Science and Engineering book series (ESE)


The production and use of various highly persistent synthetic compounds lead to environmental pollution. Among such compounds, 2,4,6-trinitrotoluene (TNT) is the one which is commonly used as an explosive. Synthesis and wide use of TNT in ammunition have resulted in the contamination of soil, air, surface water, and groundwater.


High Performance Liquid Chromatography Nitro Group Pentaerythritol Tetranitrate Nitro Group Reduction Visible Absorbance Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter is dedicated to John Neuman († Feb 20, 2011), Laboratory Manager at the Center for Biofilm Engineering at Montana State University from 1994 to 2008. His indispensable help with all aspects of analytical chemistry, proper laboratory techniques, safety and ‘life in general’ is gratefully acknowledged and will be forever remembered.

This work was supported by the Fulbright Program. Partial financial support was provided by the US Department of Defense, Army Research Office, Grant No. DAAD19-03-C-0103 and the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG-02-09ER64758.


  1. Borch T, Gerlach R (2004) Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA method 8,330 explosives: influence of temperature and an ion-pair reagent. J Chromatogr A 1022:83–94CrossRefGoogle Scholar
  2. Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133CrossRefGoogle Scholar
  3. Fiorella PD, Spain JC (1997) Transformation of 2,4,6-trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63:2007–2015Google Scholar
  4. French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868Google Scholar
  5. Hathaway JA (1985) Subclinical effects of trinitrotoluene: a review of epidemiology studies. In: Rickert DE (ed) Toxicity of nitroaromatic compounds hemisphere publishing corporation Washington DC, pp 255–274Google Scholar
  6. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986Google Scholar
  7. Hawari J, Halasz A, Paquet L, Zhou E, Spencer B, Ampleman G, Thiboutot S (1998) Characterization of metabolites in the biotransformation of 2,4,6-trinitrotoluene with anaerobic sludge: role of triaminotoluene. Appl Environ Microbiol 64:2200–2206Google Scholar
  8. Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478CrossRefGoogle Scholar
  9. Jain MR, Zinjarde SS, Deobagkar DD, Deobagkar DN (2004) 2,4,6-Trinitrotoluene transformation by a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Marine Pollut Bull 49:783–788CrossRefGoogle Scholar
  10. Keith LH, Telliard WA (1979) Priority pollutants: a perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  11. Khilyas IV, Ziganshin AM, Pannier AJ, Gerlach R (2013) Effect of ferrihydrite on 2,4,6-trinitrotoluene biodegradation by an aerobic yeast. Biodegradation. doi: 10.1007/s10532-012-9611-4
  12. Kim H-Y, Bennett GN, Song H-G (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028CrossRefGoogle Scholar
  13. Kim H-Y, Song H-G (2000) Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr Microbiol 41:317–320CrossRefGoogle Scholar
  14. Leung KH, Yao M, Stearns R, Chiu S-HL (1995) Mechanism of bioactivation and covalent binding of 2,4,6-trinitrotoluene. Chem Biol Interact 97:37–51CrossRefGoogle Scholar
  15. Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-trinitrotoluene. Appl Environ Microbiol 60:187–194Google Scholar
  16. Naumov AV, Suvorova ES, Boronin AM, Zaripova SK, Naumova RP (1999) Transformation of 2,4,6-trinitrotoluene into toxic hydroxylamino derivatives by Lactobacilli. Microbiology 68:56–62 (Russia)Google Scholar
  17. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750CrossRefGoogle Scholar
  18. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111CrossRefGoogle Scholar
  19. Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–167CrossRefGoogle Scholar
  20. Smets BF, Yin H, Esteve-Núñez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277CrossRefGoogle Scholar
  21. Spain JC, Hughes JB, Knackmuss H-J (2000) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca RatonGoogle Scholar
  22. Spanggord RJ, Spain JC, Nishino SF, Mortelmans KE (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57:3200–3205Google Scholar
  23. Stenuit B, Eyers L, Fantroussi SE, Agathos SN (2005) Promising strategies for the mineralization of 2,4,6-trinitrotoluene. Rev Environ Sci Bio/Tech 4:39–60CrossRefGoogle Scholar
  24. van Dillewijn P, Wittich RM, Caballero A, Ramos JL (2008) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823CrossRefGoogle Scholar
  25. Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934Google Scholar
  26. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252Google Scholar
  27. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574CrossRefGoogle Scholar
  28. Wittich RM, Haidour A, van Dillewijn P, Ramos JL (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739CrossRefGoogle Scholar
  29. Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca RatonGoogle Scholar
  30. Yinon J, Johnson JV, Bernier UR, Yost RA, Mayfield HT, Mahone WC, Vorbeck C (1995) Reactions in the mass spectrometry of a hydride meisenheimer complex of 2,4,6-trinitrotoluene (TNT). J Mass Spectrom 30:715–722CrossRefGoogle Scholar
  31. Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-trinitrotoluene (TNT) initial conversion by yeasts. FEMS Microbiol Lett 217:213–217CrossRefGoogle Scholar
  32. Ziganshin AM, Gerlach R, Borch T, Naumov AV, Naumova RP (2007) Production of eight different hydride complexes and nitrite release from 2,4,6-trinitrotoluene by Yarrowia lipolytica. Appl Environ Microbiol 73:7898–7905CrossRefGoogle Scholar
  33. Ziganshin AM, Naumova RP, Pannier AJ, Gerlach R (2010a) Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica. Chemosphere 79:426–433CrossRefGoogle Scholar
  34. Ziganshin AM, Gerlach R, Naumenko EA, Naumova RP (2010b) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology 79:199–205 (Russia)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of MicrobiologyKazan (Volga Region) Federal UniversityKazanRussia
  2. 2.Center for Biofilm Engineering and Department of Chemical and Biological EngineeringMontana State UniversityBozemanUSA

Personalised recommendations