Biodegradation of Hexanitrohexaazaisowurtzitane (CL-20)

  • Julius Pavlov
  • Mohammed SidhoumEmail author
Part of the Environmental Science and Engineering book series (ESE)


Hexanitrohexaazaisowurtzitane (CL-20), the most powerful chemical explosive known, is not degraded by activated sludge. However, alkaline hydrolysis coupled with aerobic microbial treatment is a viable option for CL-20 removal from waste streams. Furthermore, the white rot fungus Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen at CL-20 concentrations of up to 100 mg/l, with fungal growth not affected at CL-20 concentrations of up to 500 mg/l. A logistic kinetic growth model fits CL-20 biodegradation data very well. Three main possible pathways for CL-20 biodegradation are possible, all leading to similar end-products.


Activate Sludge Ammonium Sulfate Alkaline Hydrolysis Energetic Material Ligninolytic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, London, UKGoogle Scholar
  2. Balakrishnan VK, Halasz A, Hawari J (2003) Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol 37:1838–1843CrossRefGoogle Scholar
  3. Balakrishnan VK, Monteil-Rivera F, Halasz A, Corbeanu A, Hawari J (2004) Decomposition of the polycyclic nitramine explosive, CL-20, by Fe0. Environ Sci Technol 38:6861–6866CrossRefGoogle Scholar
  4. Barr DP, Aust SD (1994) Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol 138:49–72CrossRefGoogle Scholar
  5. Bhushan B, Halasz A, Paquet L, Hawari J (2003a) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. StrainDN22. Appl Environ Microbiol 69:1347–1351CrossRefGoogle Scholar
  6. Bhushan B, Paquet L, Spain JC, Hawari J (2003b) Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Appl Environ Microbiol 69:5216–5221CrossRefGoogle Scholar
  7. Bhushan B, Halasz A, Hawari J (2004a) Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Comm 322:271–276CrossRefGoogle Scholar
  8. Bhushan B, Halasz A, Spain JC, Hawari J (2004b) Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol 70:4040–4047CrossRefGoogle Scholar
  9. Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Comm 316:816–821CrossRefGoogle Scholar
  10. Bhushan B, Halasz A, Hawari J (2005a) Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol 69:448–455CrossRefGoogle Scholar
  11. Bhushan B, Halasz A, Hawari J (2005b) Stereo-specificity for pro-(R) hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Biochem Biophys Res Commun 337:1080–1083CrossRefGoogle Scholar
  12. Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129:13–21CrossRefGoogle Scholar
  13. Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167CrossRefGoogle Scholar
  14. Crocker FH, Thompson KT, Szecsody JE, Fredrickson HL (2005) Biotic and abiotic degradation of CL-20 and RDX in soils. J Environ Qual 34:2208–2216CrossRefGoogle Scholar
  15. Crocker FH, Indest KJ, Fredrickson HL (2006) Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol 73:274–290CrossRefGoogle Scholar
  16. Dutta SK, Jackson MM, Hou LH, Powell D, Tatem HE (1998) Non-ligninolytic TNT mineralization in contaminated soil by Phanerochaete chrysosporium. Biorem J 2:97–103CrossRefGoogle Scholar
  17. Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172CrossRefGoogle Scholar
  18. Fournier D, Halasz A, Spain J, Spanggord RJ, Bottaro JC, Hawari J (2004) Biodegradation of the hexahydro-1,3,5-trinitro-1,3,5-triazine ring cleavage product 4-nitro-2,4-diazabutanal by Phanerochaete chrysosporium. Appl Environ Microbiol 70:1123–1128CrossRefGoogle Scholar
  19. Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J (2006) Degradation of CL-20 by white rot fungi. Chemosphere 63:175–181CrossRefGoogle Scholar
  20. Fritsche W, Scheibner K, Herre A, Hofrichter M (2000) Fungal degradation of explosives: TNT and related nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca Raton, FL, pp 213–237Google Scholar
  21. Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-tri-azine on soil microbial activities. Environ Toxicol Chem 20:947–951CrossRefGoogle Scholar
  22. Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2002) Toxicity ofoctahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) to soil microbes. Bull Environ Contam Toxicol 69:97–103CrossRefGoogle Scholar
  23. Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56:653–658CrossRefGoogle Scholar
  24. Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J (2002) Insights into the formation and degradation mechanisms of methylenedi-nitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol 36:633–638CrossRefGoogle Scholar
  25. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986Google Scholar
  26. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000a) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  27. Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000b) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657CrossRefGoogle Scholar
  28. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (2001) Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol 35:70–75CrossRefGoogle Scholar
  29. Hawari J, Deschamps S, Beaulieu C, Paquet L, Halasz A (2004) Photodegradation of CL-20: insights into the mechanisms ofinitial reactions and environmental fate. Water Res 38:4055–4064CrossRefGoogle Scholar
  30. Hewitt AD (2002) Analysis of nitroglycerine in soils and on mortar fins using GC-TID. Technical report ERDC/CRREL TR-02-3, U.S. Army Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New HampshireGoogle Scholar
  31. Jenkins TF, Walsh ME, Thome PG, Miyares PH, Ranney TA, Grant CL, Esparza JR (1998) Site characterization for explosives contamination at a military firing range impact area. Special report 98–99, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New HampshireGoogle Scholar
  32. Jenkins TF, Pennington JC, Ranney TA, Berry TE Jr, Miyares PH, Walsh ME, Hewitt AD, Perron NM, Parker LV, Hayes CA, Wahlgren EG (2001) Characterization of explosives contamination at military firing ranges. Technical report ERDC TR-01-5, U.S. Army Engineer Research and Development CenterGoogle Scholar
  33. Jenkins TF, Bartolini C, Ranney TA (2003) Stability of CL-20, TNAZ, HMX, RDX, NG, and PETN in moist, unsaturated soil. Technical report ERDC/CCREL TR-03-7, U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering LaboratoryGoogle Scholar
  34. Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446”. Enz Microb Technol 34:187–195CrossRefGoogle Scholar
  35. Karakaya P, Christodoulatos C, Koutsospyros A, Balas W, Nicolich S, Sidhoum M (2009) Biodegradation of the high explosive hexanitrohexaazaisowurtzitane (CL-20). Int J Environ Res Public Health 6:1371–1392CrossRefGoogle Scholar
  36. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan VK, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX. J Chromatogr A 1025:125–132CrossRefGoogle Scholar
  37. Okovytyy S, Kholod Y, Qasim M, Fredrickson H, Leszczynski J (2005) The mechanism of unimolecular decomposition of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. A computational DFT study. J Phys Chem 109:2964–2970CrossRefGoogle Scholar
  38. Pal N, Christodoulatos C (1995) Fungal degradation of 2,4-dinitrotoluene and nitroglycerin in batch and fixed-film bioreactors. J Energ Mater 13:259–282CrossRefGoogle Scholar
  39. Pennington JC, Jenkins TF, Brannon JM, Lynch J, Ranney TA, Berry TE Jr, Hayes CA, Miyares PH, Walsh ME, Hewitt AD, Perron N, Delfino JJ (2001) Distribution and fate of energetics on DoD test and training ranges: interim report 1. Technical report ERDC TR-01-13, U.S. Army Engineer Research and Development CenterGoogle Scholar
  40. Pennington JC, Jenkins TF, Thiboutot S, Ampleman G, Clausen J, Hewitt AD, Lewis J, Walsh MR, Walsh ME, Ranney TA, Silverblatt B, Marois A, Gagnon A, Brousseau P, Zufelt JE, Poe K, Bouchard M, Martel R, Walker DD, Ramsey CA, Hayes CA, Yost SL, Bjella KL, Trepanier L, Berry TE Jr, Lambert DJ, Dube P, Perron NM (2005) Distribution and fate of energetics on DoD test and training ranges: interim report 5. Technical Report ERDC TR-05-2, U.S. Army Engineer Research and Development Center, Vicksburg, MSGoogle Scholar
  41. Qasim MM, Fredrickson HL, McGrath C, Furey J, Szecsody J, Bajpai R (2004) Semiempirical predictions of chemical degradation reaction mechanisms of CL-20 as related to molecular structure. Struct Chem 15:493–499CrossRefGoogle Scholar
  42. Qasim M, Fredrickson H, Honea P, Furey J, Leszczynski J, Okovytyy S, Szecsody J, Kholod Y (2005) Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction. SAR QSAR Environ Res 16:495–515CrossRefGoogle Scholar
  43. Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388CrossRefGoogle Scholar
  44. Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, Hawari J (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23:1026–1034CrossRefGoogle Scholar
  45. Schmidt SK, Simkins S, Alexander M (1985) Models for the kinetics of biodegradation of organic compounds not supporting growth. Appl Environ Microbiol 50:323–331Google Scholar
  46. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771CrossRefGoogle Scholar
  47. Sheramata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388CrossRefGoogle Scholar
  48. Spain JC (2000) Introduction. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Boca Raton, FL, pp 1–5Google Scholar
  49. Stahl JD, Van Aken B, Cameron MD, Aust SD (2001) Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) biodegradation in liquid and solid-state matrices by Phanerochaete chrysosporium. Bioremed J 5:13–25CrossRefGoogle Scholar
  50. Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexani-tro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139:353–361CrossRefGoogle Scholar
  51. Szecsody JE, Girvin DC, Devary BJ, Campbell JA (2004) Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments. Chemosphere 56:593–610CrossRefGoogle Scholar
  52. Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71:8265–8272CrossRefGoogle Scholar
  53. Trott S, Nishino SF, Hawari J, Spain JC (2003) Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol 69:1871–1874CrossRefGoogle Scholar
  54. US Environmental Protection Agency (2004) 2004 edition of the drinking water standards and health advisories. Publication EPA 822-R-04-005. Office of water, U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  55. Vahabzadeh F, Mehranian M, Saatari AR (2004) Color removal ability of Phanerochaete chrysosporium in relation to lignin peroxidase and manganese peroxidase produced in molasses wastewater. World J Microb Biot 20:859–864CrossRefGoogle Scholar
  56. Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trini-tro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a photosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoids x nigra DN34). Appl Environ Microbiol 70:508–517CrossRefGoogle Scholar
  57. Walsh ME, Collins CM, Racine CH, Jenkins TF, Gelvin AB, Ranney TA (2001) Sampling for explosive residues at Fort Greely, Alaska: reconnaissance visit, July 2000. Technical report ERDC/CRREL TR-01-15, U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New HampshireGoogle Scholar
  58. Wingfors H, Edlund C, Hagglund L, Waleij A, Sjostrom J, Karlsson R-M, Leffler P, Qvarfort U, Ahlberg M, Thiboutot S, Ampleman G, Martel R, Duvalois W, Creemers A, van Ham N (2006) Evaluation of the contamination by explosives and metals in soils at the Alvdalen Shooting Range. Part II: results and discussion. Report FO1-R-1877-SE, FOI-Swedish Defence Research Agency, NBC Defence, SE-901 82 UmeaGoogle Scholar
  59. Zhao J-S, Halasz A, Paquet L, Beaulieu C, Hawari J (2002) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68:5336–5341CrossRefGoogle Scholar
  60. Zhao J-S, Paquet L, Halasz A, Hawari J (2003) Metabolism ofhexahydro-1,3–5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol 63:187–193CrossRefGoogle Scholar
  61. Zhao J-S, Paquet L, Halasz A, Manno D, Hawari J (2004) Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett 237:65–72CrossRefGoogle Scholar
  62. Zhou G, Wang J, He W-D, Wong N-B, Tian A, Li W-K (2002) Theoretical investigation of four conformations of HNIW by B3LYP method. J Molec Struct THEOCHEM 589–590:273–280CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Center for Environmental SystemsStevens Institute of TechnologyHobokenUSA

Personalised recommendations