Advertisement

Phytoremediation of Soil Contaminated with Explosive Compounds

  • Katarzyna PanzEmail author
  • Korneliusz Miksch
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Many sites all over the world are today contaminated with explosive substances. Environmental pollution caused by these compounds is principally associated with the explosives manufacturing, loading, assembling and exploitation for military and industrial purposes.

Keywords

Switch Grass Hairy Root Culture Hibiscus Cannabinus Canary Grass Vetiver Grass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adamia G, Ghoghoberidze M, Graves D, Khatisashvili G, Kvesitadze G, Lomidze E, Ugrekhelidze D, Zaalishvili G (2006) Absortpion, distribution and transformation of TNT in higher plants. Ecotoxicol Environ Saf 64:136–145CrossRefGoogle Scholar
  2. Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. Environ Qual 33:1362–1368CrossRefGoogle Scholar
  3. Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman N (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa Army Ammunition Plant. Ann NY Acad Sci 829:179–194CrossRefGoogle Scholar
  4. Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072CrossRefGoogle Scholar
  5. Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–625CrossRefGoogle Scholar
  6. Best EPH, Tatem HE, Geter KN, Wells ME, Lane BK (2008) Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms. Environ Toxicol Chem 12:2539–2547CrossRefGoogle Scholar
  7. Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott ER, Bruce NC (2009) The role of oxophytodienoatereductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 151:253–261CrossRefGoogle Scholar
  8. Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361CrossRefGoogle Scholar
  9. Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264CrossRefGoogle Scholar
  10. Boyer I, Miller JK, Watson RE, DeSesso J, Vogel CM (2007) Comparison of the relative risks of CL-20 and RDX. Noblis Technical ReportGoogle Scholar
  11. Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475CrossRefGoogle Scholar
  12. Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC et al (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, D.C., pp 239–275Google Scholar
  13. Campos VM, Merino I, Casado R, Pacios LF (2008) Review. Phytoremediation of organic pollutants. Spanish J Agric Res 6:38–47Google Scholar
  14. Chang YY, Kwon YS, Kim SY, Lee IS, Bae B (2003) Enhanced degradation of 2,4,6-Trinitrotoluene (TNT) in a soil column planted with Indian mallow (Abutillon avicennae). J Biosci Bioeng 97:99–103Google Scholar
  15. Chen D, Liu ZL, Banwart W (2011) Concentration-dependent RDX uptake and remediation by crop plants. Environ Sci Pollut Res 18:908–917CrossRefGoogle Scholar
  16. Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J Hazard Mater 143:643–648CrossRefGoogle Scholar
  17. Cruz-Uribe O, Rorrer GL (2005) Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93:401–412CrossRefGoogle Scholar
  18. Dietz AC, Schnoor JL (2001) Advances in Phytoremediation. Environ Health Perspect 109:163–168Google Scholar
  19. Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983CrossRefGoogle Scholar
  20. Duringer JM, Craig AM, Smith DJ, Chaney RL (2010) Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses. Environ Sci Technol 44:6325–6330CrossRefGoogle Scholar
  21. Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451CrossRefGoogle Scholar
  22. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritoltetranitrate reductase. Nat Biotechnol 17:491–494CrossRefGoogle Scholar
  23. Gong P, Wilke BM, Fleischmanna S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157CrossRefGoogle Scholar
  24. Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56:653–658CrossRefGoogle Scholar
  25. Groom CA, Halasz A, Paquet L, Morris N, Olivier L, Dubois C, Hawari J (2002) Accumulation of HMX (Octahydro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil. Environ Sci Technol 36:112–118CrossRefGoogle Scholar
  26. Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172CrossRefGoogle Scholar
  27. Hannink N, Subramanian N, Rosser SJ, Basran A, Murray JAH, Shanks JV (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremed 9:385–401CrossRefGoogle Scholar
  28. Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10:845–855CrossRefGoogle Scholar
  29. Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271CrossRefGoogle Scholar
  30. Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827CrossRefGoogle Scholar
  31. Just CL, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary. Environ Sci Technol 38:290–295CrossRefGoogle Scholar
  32. Krishnan G, Horst GL, Shea PJ (2000) Differential tolerance of cool- and warm-season grasses to TNT-contaminated soil. Int J Phytoremediat 2:369–382CrossRefGoogle Scholar
  33. Kurumata M, Takahashi M, Sakamoto A, Ramos JL, Nepovim A, Vanek T (2005) Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 50:272–278Google Scholar
  34. Larson SL, Jones RP, Escalon L, Parker D (1999) Classification of explosives transformation products in plant tissue. Environ Toxicol Chem 18:1270–1276CrossRefGoogle Scholar
  35. Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307CrossRefGoogle Scholar
  36. Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007a) High uptake of 2,4,6-trinitrotoluene by vetiver grass-potential for phytoremediation? Environ Pollut 146:1–4CrossRefGoogle Scholar
  37. Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007b) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanoides. Environ Pollut 148:101–106CrossRefGoogle Scholar
  38. McCutcheon S, Schnoor J (2003) Phytoremediation: transformation and control of contaminants. Wiley Inc, LondonGoogle Scholar
  39. Nepovim A, Hebner A, Soudek P, Gerth A, Thomas H, Smrcek S, Vanek T (2005) Degradation of 2,4,6-trinitrotoluene by selected helophytes. Chemosphere 60:1454–1461CrossRefGoogle Scholar
  40. Panz K, Miksch K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manag 113:85–92CrossRefGoogle Scholar
  41. Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17:2266–2273Google Scholar
  42. Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172CrossRefGoogle Scholar
  43. Peterson MM, Horst GL, Shea PJ, Comfort SD, Peterson RKD (1996) TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of Tall fescue. Environ Pollut 1:57–62CrossRefGoogle Scholar
  44. Peterson MM, Horst GL, Shea PJ, Comfort SD (1998) Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene. Environ Pollut 99:53–59CrossRefGoogle Scholar
  45. Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270CrossRefGoogle Scholar
  46. Podlipna R, Fialova Z, Vanek T (2008) Toxic effect of nitroesters on plant tissue cultures. Plant Cell Tiss Organ Cult 94:305–311CrossRefGoogle Scholar
  47. Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton AM, Stewart CN Jr (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genomics 9:537–547CrossRefGoogle Scholar
  48. Riefler RG, Medina VF (2006) Phytotreatment of propellant contamination. Chemosphere 63:1054–1059CrossRefGoogle Scholar
  49. Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209CrossRefGoogle Scholar
  50. Rocheleau S, Kuperman RG, Martel M, Paquet L, Bardai G, Wong S, Sarrazin M, Dodard S, Gong P, Hawari J, Checkai RT, Sunahara GI (2006) Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil. Chemosphere 62:545–558CrossRefGoogle Scholar
  51. Rocheleau S, Lachance B, Kuperman RG, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2008) Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. Environ Pollut 156:199–206CrossRefGoogle Scholar
  52. Rocheleau S, Kuperman RG, Dodard SG, Sarrazin M, Savard K, Paquet L, Hawari J, Checkai RT, Thiboutot S, Ampleman G, Sunahara GI (2011) Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil. Sci Total Environ 409:5284–5291CrossRefGoogle Scholar
  53. Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111CrossRefGoogle Scholar
  54. Rosser SJ, French CE, Bruce NC (2001) Special Symposium: Engineering plants for the phytodetoxification of explosives. In vitro Cell Dev Biol Plant 37:330–333Google Scholar
  55. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219CrossRefGoogle Scholar
  56. Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81CrossRefGoogle Scholar
  57. Rylott EL, Lorenz A, Bruce NC (2011a) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22:434–440CrossRefGoogle Scholar
  58. Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011b) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413CrossRefGoogle Scholar
  59. Scheidemann P, Klunk A, Sens C, Werner D (1998) Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J Plant Physiol 152:242–247CrossRefGoogle Scholar
  60. Sens C, Scheidemann P, Werner D (1999) The distribution of 14C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environ Pollut 104:113–119CrossRefGoogle Scholar
  61. Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771CrossRefGoogle Scholar
  62. Schnoor J (2011) Phytoremediation for the containment and treatment of energetic and propellant material releases on testing and training ranges. Final Report, SERDP Project ER-1499Google Scholar
  63. Strand SE, Doty SL, Bruce N (2009) Engineering transgenic plants for the sustained containment and in situ treatment of energetic materials. Final Report, SERDP Project ER-1318Google Scholar
  64. Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139:353–361CrossRefGoogle Scholar
  65. Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284CrossRefGoogle Scholar
  66. Thorne GP (1999) Fate of explosives in plant tissues contaminated during phytoremediation. Special Report 99-19Google Scholar
  67. Travis ER, Hannink NK, van Der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861CrossRefGoogle Scholar
  68. van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro 1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34). Environ Sci Technol 38:4572–4579CrossRefGoogle Scholar
  69. van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236CrossRefGoogle Scholar
  70. van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410CrossRefGoogle Scholar
  71. Vanek T, Nepovim A, Podlipna R, Zeman S, Vagner M (2002) Phytoremediation of selected explosives. Water Air Soil Pollut Focus 3:259–267Google Scholar
  72. Vanek T, Nepovim A, Podlipna R, Huebner A, Vavrikova Z, Gerth A, Thomas H, Smrcek S (2006) Phytoremediation of explosives in toxic wastes. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation, Springer, Netherlands, pp 3–23Google Scholar
  73. Vanek T, Gerth A, Vavrikova Z, Podlipna R, Soudek P (2007) Phytoremediation of explosives. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents, NATO Science series, Series IV: Earth and environmental sciences, vol 75. Springer, Dordrecht, pp 209–225Google Scholar
  74. Vila M, Lorber-Pascal S, Rathahao E, Debrauwer L, Canlet C, Laurent F (2005) Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension culture. Environ Sci Technol 39:663–672CrossRefGoogle Scholar
  75. Vila M, Lorber-Pascal S, Laurent F (2007a) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154CrossRefGoogle Scholar
  76. Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007b) Phytotoxicity to and uptake of RDX by rice. Environ Pollut 145:813–817CrossRefGoogle Scholar
  77. Vila M, Lorber-Pascal S, Laurent F (2008) Phytotoxicity to and uptake of TNT by rice. Environ Geochem Health 30:199–203CrossRefGoogle Scholar
  78. Wang Ch, Lyon DY, Hughes JB, Bennett GN (2003) Role of hydroxylamine intermediates in the phytotransformation of 2,4,6-trinitrotoluene by Myriophyllum aquaticum. Environ Sci Technol 37:3595–3600CrossRefGoogle Scholar
  79. Winfield LE, Rodgers JH, D’Surney SJ (2004) The responses of selected terrestrial plants to short (<12 days) and long term (2,4 and 6 Weeks) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. Part I: growth and developmental effects. Ecotoxicol 13:335–347CrossRefGoogle Scholar
  80. Yoon JM, Oh BT, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol 36:4649–4655CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Environmental Biotechnology DepartmentSilesian University of TechnologyGliwicePoland

Personalised recommendations