Skip to main content

Phytoremediation of Soil Contaminated with Explosive Compounds

  • Chapter
  • First Online:
Biological Remediation of Explosive Residues

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1230 Accesses

Abstract

Many sites all over the world are today contaminated with explosive substances. Environmental pollution caused by these compounds is principally associated with the explosives manufacturing, loading, assembling and exploitation for military and industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamia G, Ghoghoberidze M, Graves D, Khatisashvili G, Kvesitadze G, Lomidze E, Ugrekhelidze D, Zaalishvili G (2006) Absortpion, distribution and transformation of TNT in higher plants. Ecotoxicol Environ Saf 64:136–145

    Article  Google Scholar 

  • Balakrishnan VK, Monteil-Rivera F, Gautier MA, Hawari J (2004) Sorption and stability of the polycyclic nitramine explosive CL-20 in soil. Environ Qual 33:1362–1368

    Article  Google Scholar 

  • Best EP, Zappi ME, Fredrickson HL, Sprecher SL, Larson SL, Ochman N (1997) Screening of aquatic and wetland plant species for phytoremediation of explosives-contaminated groundwater from the Iowa Army Ammunition Plant. Ann NY Acad Sci 829:179–194

    Article  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072

    Article  Google Scholar 

  • Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–625

    Article  Google Scholar 

  • Best EPH, Tatem HE, Geter KN, Wells ME, Lane BK (2008) Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms. Environ Toxicol Chem 12:2539–2547

    Article  Google Scholar 

  • Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott ER, Bruce NC (2009) The role of oxophytodienoatereductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol 151:253–261

    Article  Google Scholar 

  • Bhadra R, Spanggord RJ, Wayment DG, Hughes JB, Shanks JV (1999) Characterization of oxidation products of TNT metabolism in aquatic phytoremediation systems of Myriophyllum aquaticum. Environ Sci Technol 33:3354–3361

    Article  Google Scholar 

  • Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264

    Article  Google Scholar 

  • Boyer I, Miller JK, Watson RE, DeSesso J, Vogel CM (2007) Comparison of the relative risks of CL-20 and RDX. Noblis Technical Report

    Google Scholar 

  • Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475

    Article  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC et al (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis, Washington, D.C., pp 239–275

    Google Scholar 

  • Campos VM, Merino I, Casado R, Pacios LF (2008) Review. Phytoremediation of organic pollutants. Spanish J Agric Res 6:38–47

    Google Scholar 

  • Chang YY, Kwon YS, Kim SY, Lee IS, Bae B (2003) Enhanced degradation of 2,4,6-Trinitrotoluene (TNT) in a soil column planted with Indian mallow (Abutillon avicennae). J Biosci Bioeng 97:99–103

    Google Scholar 

  • Chen D, Liu ZL, Banwart W (2011) Concentration-dependent RDX uptake and remediation by crop plants. Environ Sci Pollut Res 18:908–917

    Article  Google Scholar 

  • Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J Hazard Mater 143:643–648

    Article  Google Scholar 

  • Cruz-Uribe O, Rorrer GL (2005) Uptake and biotransformation of 2,4,6-trinitrotoluene (TNT) by microplantlet suspension culture of the marine red macroalga Portieria hornemannii. Biotechnol Bioeng 93:401–412

    Article  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in Phytoremediation. Environ Health Perspect 109:163–168

    Google Scholar 

  • Das P, Datta R, Makris KC, Sarkar D (2010) Vetiver grass is capable of removing TNT from soil in the presence of urea. Environ Pollut 158:1980–1983

    Article  Google Scholar 

  • Duringer JM, Craig AM, Smith DJ, Chaney RL (2010) Uptake and transformation of soil [14C]-trinitrotoluene by cool-season grasses. Environ Sci Technol 44:6325–6330

    Article  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  Google Scholar 

  • French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritoltetranitrate reductase. Nat Biotechnol 17:491–494

    Article  Google Scholar 

  • Gong P, Wilke BM, Fleischmanna S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  Google Scholar 

  • Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56:653–658

    Article  Google Scholar 

  • Groom CA, Halasz A, Paquet L, Morris N, Olivier L, Dubois C, Hawari J (2002) Accumulation of HMX (Octahydro-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil. Environ Sci Technol 36:112–118

    Article  Google Scholar 

  • Hannink N, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172

    Article  Google Scholar 

  • Hannink N, Subramanian N, Rosser SJ, Basran A, Murray JAH, Shanks JV (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremed 9:385–401

    Article  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10:845–855

    Article  Google Scholar 

  • Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271

    Article  Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827

    Article  Google Scholar 

  • Just CL, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary. Environ Sci Technol 38:290–295

    Article  Google Scholar 

  • Krishnan G, Horst GL, Shea PJ (2000) Differential tolerance of cool- and warm-season grasses to TNT-contaminated soil. Int J Phytoremediat 2:369–382

    Article  Google Scholar 

  • Kurumata M, Takahashi M, Sakamoto A, Ramos JL, Nepovim A, Vanek T (2005) Tolerance to, and uptake and degradation of 2,4,6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 50:272–278

    Google Scholar 

  • Larson SL, Jones RP, Escalon L, Parker D (1999) Classification of explosives transformation products in plant tissue. Environ Toxicol Chem 18:1270–1276

    Article  Google Scholar 

  • Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manag 70:291–307

    Article  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007a) High uptake of 2,4,6-trinitrotoluene by vetiver grass-potential for phytoremediation? Environ Pollut 146:1–4

    Article  Google Scholar 

  • Makris KC, Shakya KM, Datta R, Sarkar D, Pachanoor D (2007b) Chemically catalyzed uptake of 2,4,6-trinitrotoluene by Vetiveria zizanoides. Environ Pollut 148:101–106

    Article  Google Scholar 

  • McCutcheon S, Schnoor J (2003) Phytoremediation: transformation and control of contaminants. Wiley Inc, London

    Google Scholar 

  • Nepovim A, Hebner A, Soudek P, Gerth A, Thomas H, Smrcek S, Vanek T (2005) Degradation of 2,4,6-trinitrotoluene by selected helophytes. Chemosphere 60:1454–1461

    Article  Google Scholar 

  • Panz K, Miksch K (2012) Phytoremediation of explosives (TNT, RDX, HMX) by wild-type and transgenic plants. J Environ Manag 113:85–92

    Article  Google Scholar 

  • Pavlostathis SG, Comstock KK, Jacobson ME, Saunders FM (1998) Transformation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum spicatum. Environ Toxicol Chem 17:2266–2273

    Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    Article  Google Scholar 

  • Peterson MM, Horst GL, Shea PJ, Comfort SD, Peterson RKD (1996) TNT and 4-amino-2,6-dinitrotoluene influence on germination and early seedling development of Tall fescue. Environ Pollut 1:57–62

    Article  Google Scholar 

  • Peterson MM, Horst GL, Shea PJ, Comfort SD (1998) Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene. Environ Pollut 99:53–59

    Article  Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opin Biotechnol 11:262–270

    Article  Google Scholar 

  • Podlipna R, Fialova Z, Vanek T (2008) Toxic effect of nitroesters on plant tissue cultures. Plant Cell Tiss Organ Cult 94:305–311

    Article  Google Scholar 

  • Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton AM, Stewart CN Jr (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genomics 9:537–547

    Article  Google Scholar 

  • Riefler RG, Medina VF (2006) Phytotreatment of propellant contamination. Chemosphere 63:1054–1059

    Article  Google Scholar 

  • Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209

    Article  Google Scholar 

  • Rocheleau S, Kuperman RG, Martel M, Paquet L, Bardai G, Wong S, Sarrazin M, Dodard S, Gong P, Hawari J, Checkai RT, Sunahara GI (2006) Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil. Chemosphere 62:545–558

    Article  Google Scholar 

  • Rocheleau S, Lachance B, Kuperman RG, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2008) Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. Environ Pollut 156:199–206

    Article  Google Scholar 

  • Rocheleau S, Kuperman RG, Dodard SG, Sarrazin M, Savard K, Paquet L, Hawari J, Checkai RT, Thiboutot S, Ampleman G, Sunahara GI (2011) Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil. Sci Total Environ 409:5284–5291

    Article  Google Scholar 

  • Rodgers JD, Bunce NJ (2001) Treatment methods for the remediation of nitroaromatic explosives. Water Res 35:2101–2111

    Article  Google Scholar 

  • Rosser SJ, French CE, Bruce NC (2001) Special Symposium: Engineering plants for the phytodetoxification of explosives. In vitro Cell Dev Biol Plant 37:330–333

    Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  Google Scholar 

  • Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81

    Article  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011a) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22:434–440

    Article  Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011b) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413

    Article  Google Scholar 

  • Scheidemann P, Klunk A, Sens C, Werner D (1998) Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J Plant Physiol 152:242–247

    Article  Google Scholar 

  • Sens C, Scheidemann P, Werner D (1999) The distribution of 14C-TNT in different biochemical compartments of the monocotyledonous Triticum aestivum. Environ Pollut 104:113–119

    Article  Google Scholar 

  • Seth-Smith HMB, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    Article  Google Scholar 

  • Schnoor J (2011) Phytoremediation for the containment and treatment of energetic and propellant material releases on testing and training ranges. Final Report, SERDP Project ER-1499

    Google Scholar 

  • Strand SE, Doty SL, Bruce N (2009) Engineering transgenic plants for the sustained containment and in situ treatment of energetic materials. Final Report, SERDP Project ER-1318

    Google Scholar 

  • Strigul N, Braida W, Christodoulatos C, Balas W, Nicolich S (2006) The assessment of the energetic compound 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) degradability in soil. Environ Pollut 139:353–361

    Article  Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284

    Article  Google Scholar 

  • Thorne GP (1999) Fate of explosives in plant tissues contaminated during phytoremediation. Special Report 99-19

    Google Scholar 

  • Travis ER, Hannink NK, van Der Gast CJ, Thompson IP, Rosser SJ, Bruce NC (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861

    Article  Google Scholar 

  • van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro 1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34). Environ Sci Technol 38:4572–4579

    Article  Google Scholar 

  • van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  Google Scholar 

  • van Dillewijn P, Couselo JL, Corredoira E, Delgado A, Wittich RM, Ballester A, Ramos JL (2008) Bioremediation of 2,4,6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Article  Google Scholar 

  • Vanek T, Nepovim A, Podlipna R, Zeman S, Vagner M (2002) Phytoremediation of selected explosives. Water Air Soil Pollut Focus 3:259–267

    Google Scholar 

  • Vanek T, Nepovim A, Podlipna R, Huebner A, Vavrikova Z, Gerth A, Thomas H, Smrcek S (2006) Phytoremediation of explosives in toxic wastes. In: Twardowska I et al (eds) Soil and water pollution monitoring, protection and remediation, Springer, Netherlands, pp 3–23

    Google Scholar 

  • Vanek T, Gerth A, Vavrikova Z, Podlipna R, Soudek P (2007) Phytoremediation of explosives. In: Marmiroli N, Samotokin B, Marmiroli M (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents, NATO Science series, Series IV: Earth and environmental sciences, vol 75. Springer, Dordrecht, pp 209–225

    Google Scholar 

  • Vila M, Lorber-Pascal S, Rathahao E, Debrauwer L, Canlet C, Laurent F (2005) Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension culture. Environ Sci Technol 39:663–672

    Article  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007a) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154

    Article  Google Scholar 

  • Vila M, Mehier S, Lorber-Pascal S, Laurent F (2007b) Phytotoxicity to and uptake of RDX by rice. Environ Pollut 145:813–817

    Article  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2008) Phytotoxicity to and uptake of TNT by rice. Environ Geochem Health 30:199–203

    Article  Google Scholar 

  • Wang Ch, Lyon DY, Hughes JB, Bennett GN (2003) Role of hydroxylamine intermediates in the phytotransformation of 2,4,6-trinitrotoluene by Myriophyllum aquaticum. Environ Sci Technol 37:3595–3600

    Article  Google Scholar 

  • Winfield LE, Rodgers JH, D’Surney SJ (2004) The responses of selected terrestrial plants to short (<12 days) and long term (2,4 and 6 Weeks) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. Part I: growth and developmental effects. Ecotoxicol 13:335–347

    Article  Google Scholar 

  • Yoon JM, Oh BT, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol 36:4649–4655

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Panz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panz, K., Miksch, K. (2014). Phytoremediation of Soil Contaminated with Explosive Compounds. In: Singh, S. (eds) Biological Remediation of Explosive Residues. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-01083-0_11

Download citation

Publish with us

Policies and ethics