Bioremediation of 2,4,6-Trinitrotoluene Explosive Residues

  • Sikandar I. Mulla
  • Manjunatha P. Talwar
  • Harichandra Z. NinnekarEmail author
Part of the Environmental Science and Engineering book series (ESE)


A large scale manufacturing and use of a variety of synthetic chemicals in the form of pesticides, herbicides, plasticizers, explosives, dyes, drugs and industrial products in our daily life, continuously pollute soil, water and air which have direct or indirect adverse impact on our and animal health. Many of these chemicals are reported to be toxic, mutagenic or carcinogenic to humans and animals.


Nitro Group Terminal Restriction Fragment Length Polymorphism Veratryl Alcohol Pentaerythritol Tetranitrate Irpex Lacteus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488CrossRefGoogle Scholar
  2. Alvarez MA, Kitts CL, Botsford JL, Unkefer PJ (1995) Pseudomonas aeruginosa strain MA01 aerobically metabolizes the aminodinitrotoluenes produced by 2,4,6-trinitrotoluene nitro group reduction. Can J Microbiol 41:984–991CrossRefGoogle Scholar
  3. Ask K, Decologne N, Asare N, Holme JA, Artur Y, Pelczar H, Camus P (2004) Distribution of nitroreductive activity toward nilutamide in rat. Toxicol Appl Pharmacol 201:1–9CrossRefGoogle Scholar
  4. Bakhtiar R, Leung KH, Stearns RA, Hop CE (1997) Evidence for a novel heme adduct generated by the in vitro reaction of 2,4,6-trinitrotoluene with human hemoglobin using electrospray ionization mass spectrometry. J Inorg Biochem 68(4):273–278CrossRefGoogle Scholar
  5. Barreto-Rodrigues M, Silva FT, Paiva TCB (2009) Combined zerovalent iron and fenton processes for the treatment of Brazilian TNT industry wastewater. J Hazard Mater 165(1–3):1224–1228CrossRefGoogle Scholar
  6. Behrend C, Heesche-Wagner K (1999) Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB22-2. Appl Environ Microbiol 65:1372–1377Google Scholar
  7. Bernstein A, Ronen Z (2012) Biodegradation of the explosives TNT, RDX and HMX. In: Singh SN (ed) Microbial degradation of xenobiotics. environmental science and engineering, pp 135–176. DOI:  10.1007/978-3-319-01083-0_5
  8. Best EPH, Sprecher SL, Larson SL, Fredrickson HL, Bader DF (1999) Environmental behaviour of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments: uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072CrossRefGoogle Scholar
  9. Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446–452CrossRefGoogle Scholar
  10. Binks PR, French CE, Nicklin S, Bruce NC (1996) Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 62(4):1214–1219Google Scholar
  11. Boopathy R (1994) Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp (strain B). Arch Microbiol 162:167–172CrossRefGoogle Scholar
  12. Boopathy R, Kulpa CF (1992) Trinitrotoluene as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. Strain B isolated from an anaerobic digester. Curr Microbiol 25:235–241CrossRefGoogle Scholar
  13. Boopathy R, Kulpa CF, Wilson M (1993) Metabolism of 2,4,6-trinitrotoluene (TNT) by Desulfovibrio sp (B strain). Appl Microbiol Biotechnol 39:270–275CrossRefGoogle Scholar
  14. Boopathy R, Kulpa CF (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278CrossRefGoogle Scholar
  15. Boopathy R, Manning JF (1996) Characterization of partial anaerobic metabolic pathway for 2,4,6-trinitrotoluene degradation by a sulfate-reducing bacterial consortium. Can J Microbiol 42:1203–1208CrossRefGoogle Scholar
  16. Boopathy R, Manning J, Kulpa CF (1997) Optimization of environmental factors for the biological treatment of trinitrotoluene-contaminated soil. Arch Environ Contam Toxicol 32:94–98CrossRefGoogle Scholar
  17. Boopathy R, Manning J, Kulpa CF (1998a) Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry. Int Biodeterior Biodegradation 41:67–74CrossRefGoogle Scholar
  18. Boopathy R, Manning J, Kulpa CF (1998b) A laboratory study of the bioremediation of 2,4,6-trinitrotoluene-contaminated soil using aerobic/anoxic soil slurry reactor. Water Environ Res 70:80–86CrossRefGoogle Scholar
  19. Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133CrossRefGoogle Scholar
  20. Brentner LB, Mukherji ST, Merchie KM, Yoon JM, Schnoor JL, Van Aken B (2008) Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT). Chemosphere 73:657–662CrossRefGoogle Scholar
  21. Bryant C, DeLuca M (1991) Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem 266:4119–4125Google Scholar
  22. Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT metabolite that inhibits lignin peroxidase. Curr Microbiol 28:185–190CrossRefGoogle Scholar
  23. Caballero A, Lazaro JJ, Ramos JL, Esteve-Nunez A (2005) PnrA a new nitroreductase-family enzyme in the TNTdegrading strain Pseudomonas putida JLR11. Environ Microbiol 7(8):1211–1219CrossRefGoogle Scholar
  24. Chang C-S, Kim H-Y, Kang Y-M, Bae KS, Song H-G (2002) Transformations of 2,4,6-Trinitrotoluene in various conditions by Klebsiella sp. strain C1 isolated from activated sludge. J Microbiol 40(3):193–198Google Scholar
  25. Cho Y-S, Lee B-U, Oh K-H (2008) Simultaneous degradation of nitroaromatic compounds TNT, RDX, atrazine, and simazine by Pseudomonas putida HK-6 in bench-scale bioreactors. J Chem Technol Biotechnol 83:1211–1217CrossRefGoogle Scholar
  26. Cho C, Bae S, Lee W (2012) Enhanced degradation of TNT and RDX by bio-reduced iron bearing soil minerals. Adv Environ Res 1(1):1–14CrossRefGoogle Scholar
  27. Clark B, Boopathy R (2007) Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. J Hazard Mater 143:643–648CrossRefGoogle Scholar
  28. Claus H, Bausinger T, Lehmler I, Perret N, Fels G, Dehner U, Preu J, Konig H (2007) Transformation of 2,4,6-trinitrotoluene (TNT) by Raoultella terrigena. Biodegradation 18:27–35CrossRefGoogle Scholar
  29. Coleman JOD, Blake-Kalff MMA, Emyr Davies TG (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151CrossRefGoogle Scholar
  30. Conder JM, LaPoint TW, Steevens JA, Lotufo GR (2004) Recommendations for the assessment of TNT toxicity in sediment. Environ Toxicol Chem 23:141–149CrossRefGoogle Scholar
  31. Davis T (1943) The chemistry of powder and explosives. Wiley, New YorkGoogle Scholar
  32. Davies PS (2005) The biological basis of wastewater treatment. Ph.D. Published by Strathkelvin Ins. Ltd.Google Scholar
  33. De Lorme M, Craig M (2009) Biotransformation of 2,4,6-Trinitrotoluene by pure culture ruminal bacteria. Curr Microbiol 58:81–86CrossRefGoogle Scholar
  34. Dilley JV, Tyson CA, Spanggord RJ, Sasmore DP, Newell GW, Dacre JC (1982) Short-term oral toxicity of 2,4,6-trinitrotoluene in mice, rats, and dogs. J Toxicol Environ Health 9:565–585CrossRefGoogle Scholar
  35. Drzyzga O, Bruns-Nagel D, Gorontzy T, Blotevogel K-H, von Low E (1999) Anaerobic incorporation of the radiolabeled explosive TNT and metabolites into the organic soil matrix of contaminated soil after different treatment procedures. Chemosphere 38:2081–2095CrossRefGoogle Scholar
  36. Duque E, Haıdour A, Godoy F, Ramos J-L (1993) Construction of a Pseudomonas hybrid strain that mineralizes 2,4,6-trinitrotoluene. J Bacteriol 175:2278–2283Google Scholar
  37. Ederer MM, Lewis TA, Crawford RL (1997) 2,4,6-Trinitrotoluene (TNT) transformation by Clostridia isolated from a munition-fed bioreactor: comparison with non-adapted bacteria. J Ind Microbiol Biotechnol 18:82–88CrossRefGoogle Scholar
  38. El-Hawari AM, Hodgson RJ, Winston JM, Sawyer MD, Hainje M, Lee CC (1981). Species differences in the disposition and metabolism of 2,4,6-trinitrotoluene as a function of route of administration. Final Report Project No. 4274-B, Midwest Research Institute, Kansas City, MO. DAMD17-76-C-6066. AD-A114-025Google Scholar
  39. Erkelens M, Adetutu EM, Taha M, Tudararo-Aherobo L, Antiabong J, Provatas A, Ball AS (2012) Sustainable remediation–The application of bioremediated soil for use in the degradation of TNT chips. J Environ Manage 110:69–76CrossRefGoogle Scholar
  40. Esteve-Nunez A, Ramos JL (1998) Metabolism of 2,4,6-trinitrotoluene by Pseudomonas sp. JLR11. Environ Sci Technol 32:3802–3808CrossRefGoogle Scholar
  41. Esteve-Nunez A, Lucchesi G, Philipp B, Schink B, Ramos JL (2000) Respiration of 2,4,6-trinitrotoluene by Pseudomonas sp. strain JLR11. J Bacteriol 182:1352–1355CrossRefGoogle Scholar
  42. Esteve-Nunez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6trinitrotoluene. Microbiol Mol Biol Rev 65:335–352CrossRefGoogle Scholar
  43. Fant F, DeSloovere A, Matthijsen K, Marle C, ElFantroussi S, Verstraete W (2001) The use of amino compounds for binding 2,4,6-trinitrotoluene in water. Environ Pollut 11:503–507CrossRefGoogle Scholar
  44. Fernando T, Bumpus JA, Aust SD (1990) Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1666–1671Google Scholar
  45. Fiorella PD, Spain JC (1997) Transformation of 2,4,6-Trinitrotoluene by Pseudomonas pseudoalcaligenes JS52. Appl Environ Microbiol 63(5):2007–2015Google Scholar
  46. French CE, Nicklin S, Bruce N (1996) Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol 178:6623–6627Google Scholar
  47. French CE, Nicklin S, Bruce NC (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64:2864–2868Google Scholar
  48. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nature Biotechnol 17(5):491–494CrossRefGoogle Scholar
  49. Frische T (2003) Ecotoxicological evaluation of in situ bioremediation of soils contaminated by the explosive 2,4,6-Trinitrotoluene (TNT). Environ Pollut 121(1):103–113CrossRefGoogle Scholar
  50. Fuller ME, Manning JF (1997) Aerobic gram-positive and gram-negative bacteria exhibit differential sensitivity to and transformation of 2,4,6-trinitrotoluene (TNT). Curr Microbiol 35:77–83CrossRefGoogle Scholar
  51. Gallagher EM, Young LY, McGuinness LM, Kerkhof LJ (2010) Detection of 2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl Environ Microbiol 76(5):1695–1698CrossRefGoogle Scholar
  52. Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles DJ, Rylott EL, Bruce NC (2008) Detoxification of the explosive 2,4,6-trinitrotoluene in arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56:963–974CrossRefGoogle Scholar
  53. Gh RA, Moussa LA (2011) Degradation of 2,4,6-trinitrotoluene (TNT) by soil bacteria isolated from TNT contaminated soil. Australian J Bas Appl Sci 5(2):8–17Google Scholar
  54. Gilcrease CP, Murphy VG (1995) Bioconversion of 2,4-diamino-6-nitrotoluene to a novel metabolite under anoxic and aerobic conditions. Appl Environ Microbiol 61:4209–4214Google Scholar
  55. Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-trinitrotoluene to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157CrossRefGoogle Scholar
  56. Gonzalez-Perez MM, van Dillewijn P, Wittich RM, Ramos JL (2007) Escherichia coli has multiple enzymes that attack TNT and release nitrogen for growth. Environ Microbiol 9(6):1535–1540CrossRefGoogle Scholar
  57. Green A, Moore D, Farrar D (1999) Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environ Toxicol Chem 18:1783–1790CrossRefGoogle Scholar
  58. Haidour A, Ramos JL (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370CrossRefGoogle Scholar
  59. Hannink N, Rosser SJ, French CE, Basran A, Murray JA, Nicklin S, Bruce NC (2001) Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nature Biotechnol 19:1168–1172CrossRefGoogle Scholar
  60. Hannink NK, Rosser SJ, Bruce N (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21:511–538CrossRefGoogle Scholar
  61. Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1990) Analysis of 2,4,6-trinitrotoluene and its transformation products in soils and plant tissues by high-performance liquid chromatography. Int J Chromatogr 518:361–374CrossRefGoogle Scholar
  62. Hathaway JA (1985) Subclinical effects of trinitrotoluene: a review of epidemiology studies. In: Rickett DE (ed) Toxicity of nitroaromatic compounds. Hemisphere Publishing Corporation, New York, pp 255–274Google Scholar
  63. Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986Google Scholar
  64. Hawari J, Beaudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbial degradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  65. Heiss G, Knackmuss H-J (2002) Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol 5:282–287CrossRefGoogle Scholar
  66. Herrmann S, Popovic M, Paca J, Halecky M, Bajpai R (2007) Mineralization and uptake of TNT by microorganisms: effect of pretreatment with alkali. Cent Eur J Energ Mater 4(4):45–58Google Scholar
  67. Hess TF, Schrader PS (2002) Coupled abiotic-biotic mineralization of 2,4,6-trinitrotoluene (TNT). J Environ Qual 31(3):736–744CrossRefGoogle Scholar
  68. Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118Google Scholar
  69. Honeycutt ME, Jarvis AS, McFarland VA (1996) Cytotoxicity and mutagenicity of 2,4,6-trinitrotoluene and its metabolites. Ecotoxicol Environ Saf 35:282–287CrossRefGoogle Scholar
  70. Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB (2000) 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol 66:1474–1478CrossRefGoogle Scholar
  71. Hughes JB, Wang C, Yesland K, Richardson A, Bhadra R, Bennet G, Rudolph F (1998) Bamberger rearrangement during TNT metabolism by Clostridium acetobutylicum. Environ Sci Technol 32:494–500CrossRefGoogle Scholar
  72. Hwang P, Chow T, Adrian NR (1998) Transformation of TNT to Triaminotoluene by mixed cultures incubated under methanogenic conditions. USACERL Technical Report 98/116. US Army Corps of Engineers Construction Engineering and Research LaboratoriesGoogle Scholar
  73. Jiamjitrpanich W, Parkpian P, Polprasert C, Kosanlavit R (2012) Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron. 2nd International Conference on Environment and Industrial Innovation IPCBEE vol 35, IACSIT Press, SingaporeGoogle Scholar
  74. Johnson MS, Ferguson JW, Holladay SD (2000) Immune effects of oral 2,4,6-trinitrotoluene (TNT) exposure to the white-footed mouse, Peromyscus leucopus. Intl J Toxicol 19:5–11CrossRefGoogle Scholar
  75. Kalafut T, Wales ME, Rastogi VK, Naumova RP, Zaripova SK, Wild JR (1998) Biotransformation patterns of 2,4,6-trinitrotoluene by aerobic bacteria. Curr Microbiol 36:45–54CrossRefGoogle Scholar
  76. Kalderis D, Juhasz AL, Boopathy R, Comfort S (2011) Soils contaminated with explosives: environmental fate and evaluation of state-of the-art remediation processes (IUPAC Technical Report). Pure Appl Chem 83(7):1407–1484. doi: 10.1351/PAC-REP-10-01-05 CrossRefGoogle Scholar
  77. Kannan GK, Kapoor JC (2006) Workplace air quality at explosive material manufacturing and handling units. Defence Sci J 56(4):637–647Google Scholar
  78. Khan TA, Bhadra R, Hughes J (1997) Anaerobic transformation of 2,4,6-TNT and related nitroaromatic compounds by Clostridium acetobutylicum. J Ind Microbiol Biotechnol 18:198–203CrossRefGoogle Scholar
  79. Kim H-Y, Song H-G (2000) Simultaneous utilization of two different pathways in degradation of 2,4,6-Trinitrotoluene by white rot fungus Irpex lacteus. J Microbiol 38(4):250–254Google Scholar
  80. Kim HY, Song HG (2001) Comparison of 2,4,6-trinitrotoluene degradation by seven strains of white rot fungi. Curr Microbiol 41:317–320CrossRefGoogle Scholar
  81. Kim H-Y, Bennett GN, Song H-G (2002) Degradation of 2,4,6-trinitrotoluene by Klebsiella sp. isolated from activated sludge. Biotechnol Lett 24:2023–2028CrossRefGoogle Scholar
  82. Kirk RE, Othmer PF (1951) Encyclopedia of chemical technology. Interscience Encyclopedia, vol 6. Incorperated, New York, pp 43–48Google Scholar
  83. Kirk RE, Othmer PF (1993) Encyclopedia of chemical technology, vol 10. 4th edn. Wiley, New York, pp 34–39Google Scholar
  84. Kraus DL, Henchy CD, Keirn MA, et al (1985) US Department of Defence Superfund implementation at a former TNT manufacturing facility. 6th National Conference on management of uncontrolled hazardous waste sites, 4–6 Nov. Washington DC, Silver Spring, MD: Hazardous Materials Control Research InstituteGoogle Scholar
  85. Kubota A, Maeda T, Nagafuchi N, Kadokami K, Ogawa HI (2008) TNT biodegradation and production of dihydroxylaminonitrotoluene by aerobic TNT degrader Pseudomonas sp. strain TM15 in an anoxic environment. Biodegradation 19:795–805CrossRefGoogle Scholar
  86. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitroaromatic compounds: an overview. J Environ Manage 85:496–512CrossRefGoogle Scholar
  87. Kumagai Y, Kikushima M, Nakai Y, Shimojo N, Kunimoto M (2004) Neuronal nitric oxide synthase (nnos) catalyzes one-electron reduction of 2,4,6-trinitrotoluene, resulting in decreased nitric oxide production and increased nnos gene expression: implication for oxidative stress. Free Radical Biol Med 37:350–357CrossRefGoogle Scholar
  88. Labidi M, Ahmad D, Halasz A, Hawari J (2001) Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by Rhizobia. Can J Microbiol 47(6):559–566CrossRefGoogle Scholar
  89. Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 44:25–39Google Scholar
  90. Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348CrossRefGoogle Scholar
  91. Lee S, Lee S-Y, Shin K-S (2009) Biodegradation of 2,4,6-trinitrotoluene by white-rot fungus Irpex lacteus. Mycobiology 37(1):17–20CrossRefGoogle Scholar
  92. Leggett DC, Jenkins TF, Murrmann RP (1977) Composition of vapours evolved from military TNT as influenced by temperature, solid composition, age and source. Special Report 77-16, Cold Regions Research and Engineering Laboratory, Hanover, NH, USAGoogle Scholar
  93. Letzel S, Goen T, Bader M, Angerer J, Kraus T (2003) Exposure to nitroaromatic explosives and health effects during disposal of military waste. Occup Environ Med 60:483–488CrossRefGoogle Scholar
  94. Lewis TA, Goszczynski S, Crawford RL, Korus RA, Admassu W (1996) Products of anaerobic 2,4,6-trinitrotoluene (TNT) transformation by Clostridium bifermentans. Appl Environ Microbiol 62:4669–4674Google Scholar
  95. Litake GM, Joshi SG, Ghole VS (2005) TNT biotransformation potential of the clinical isolate of Salmonella typhimurium–potential ecological implications. Ind J Occup Environ Med 9:29–34CrossRefGoogle Scholar
  96. McCormick NG, Feeherry FE, Levinson HS (1976) Microbial transformation of 2,4,6-TNT and other nitroaromatic compounds. Appl Environ Microbiol 31:949–958Google Scholar
  97. Meng Q, Zhao Q, Zhao X, Wu T, Ye Z (2012) Removal of nitro aromatic compounds from 2,4,6-Trinitrotoluene red water using 1,2-ethanediamine modified macroporous polystyrene microspheres. Clean-Soil, Air, Water 40(8):823–829CrossRefGoogle Scholar
  98. Meyer R, Kohler J, Homburg A (2007) Explosives, vol 6. Wiley, WeinheimGoogle Scholar
  99. Michels J, Gottschalk G (1994) Inhibition of the lignin peroxidase of Phanerochaete chrysosporium by hydroxylamino-dinitrotoluene, an early intermediate in the degradation of 2,4,6-TNT. Appl Environ Microbiol 60:187–194Google Scholar
  100. Michels J, Gottschalk G (1995) Pathway of 2,4,6-trinitrotoluene (TNT) degradation by Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 135–149CrossRefGoogle Scholar
  101. Montpas S, Samson J, Langlois E, Lei J, Piche Y, Chevenert R (1997) Degradation of 2,4,6-trinitrotoluene by Serratia marcescens. Biotechnol Lett 19:291–294CrossRefGoogle Scholar
  102. Mueller WF, Bedell GW, Shojaee S, Jackson PJ (1995) Bioremediation of TNT wastes by higher plants. In: Proceedings of the 10th annual conference of hazardous waste research. Great plains/rocky mountain hazardous substance research center (pub)Google Scholar
  103. Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194Google Scholar
  104. Mulla SI, Hoskeri RS, Shouche YS, Ninnekar HZ (2011a) Biodegradation of 2-nitrotoluene by Micrococcus sp. strain SMN-1. Biodegradation 22:95–102CrossRefGoogle Scholar
  105. Mulla SI, Manjunatha TP, Hoskeri RS, Tallur PN, Ninnekar HZ (2011b) Biodegradation of 3-nitrobenzoate by Bacillus flexus strain XJU-4. World J Microbiol Biotechnol 27:1587–1592CrossRefGoogle Scholar
  106. Mulla SI, Talwar MP, Hoskeri RS, Ninnekar HZ (2012) Enhanced degradation of 3-Nitrobenzoate by immobilized cells of Bacillus flexus strain XJU-4. Biotech Bioprocess Eng 17(6):1294–1299CrossRefGoogle Scholar
  107. Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2013) Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere 90(6):1920–1924CrossRefGoogle Scholar
  108. Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks G, Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manage 98:51–55CrossRefGoogle Scholar
  109. Neuwoehner J, Schofer A, Erlenkaemper B, Steinbach K, Hund-Rinke K, Eisentraeger A (2007) Toxicological characterization of 2,4,6-trinitrotoluene, its transformation products and two nitramine explosives. Environ Toxicol Chem 26:1090–1099CrossRefGoogle Scholar
  110. Nishino SF, Spain JC (2004) Catabolism of nitroaromatic compounds. In: Rams J-L (ed) Pseudomonas, vol 3, Kluwer Academic/Plenum Publishers, New York, pp 575–608Google Scholar
  111. Oh B-T, Sarath G, Shea PJ (2001) TNT nitroreductase from a Pseudomonas aeruginosa strain isolated from TNT-contaminated soil. Soil Biol Biochem 33:875–881CrossRefGoogle Scholar
  112. Ohkawa H, Tsujii H, Ohkawa Y (1999) The use of cytochrome P450 genes to introduce herbicide tolerance in crops. Pestic Sci 55:1–8CrossRefGoogle Scholar
  113. Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH (2000) Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol 66:4742–4750CrossRefGoogle Scholar
  114. Park C, Kim T-H, Kim S, Lee J, Kim S-W (2002) Biokinetic parameter estimation for degradation of 2,4,6-trinitrotoluene (TNT) with Pseudomonas putida KP-T201. J Biosci Bioeng 94(1):57–61Google Scholar
  115. Park C, Kim TH, Kim S, Kim SW, Lee J, Kim SH (2003) Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. J Biosci Bioeng 95:567–571Google Scholar
  116. Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL (1996) Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol 62:1120–1123Google Scholar
  117. Pavlostathis SG, Jackson GH (1999) Biotransformation of 2,4,6-trinitrotoluene in Anabaena sp. cultures. Environ Toxicol Chem 18:412–419Google Scholar
  118. Peres CM, Agathos SN (2000) Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Ann Rev 6:197–220CrossRefGoogle Scholar
  119. Peterson FJ, Mason RP, Hovsepian J, Holtzman JL (1979) Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem 254:4009–4014Google Scholar
  120. Pichtel J (2012) Distribution and fate of military explosives and propellants in soil: A review. Appl Environ Soil Sci, Article ID 617236:33Google Scholar
  121. Preuss A, Fimpel J, Dickert G (1993) Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol 159:345–353CrossRefGoogle Scholar
  122. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692CrossRefGoogle Scholar
  123. Ramos JL, Gonzalez-Perez MM, Caballero A, Van Dillewijn P (2005) Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 16:275–281CrossRefGoogle Scholar
  124. Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086CrossRefGoogle Scholar
  125. Rezaei MR, Abdoli MA, Karbassi A, Baghvand A, Khalilzadeh R (2010) Bioremediation of TNT contaminated soil by composting with municipal solid wastes. Soil Sedim Contam Int J 19:504–514CrossRefGoogle Scholar
  126. Richman M (1996) Terrestrial plants rested for groundwater cleanup. Water Environ Technol 8:17–19Google Scholar
  127. Rieble S, Joshi DK, Gold M (1994) Aromatic nitroreductase from the basidiomycete Phanerochaete chrysospurium. Biochem Biophys Res Commun 205:298–304CrossRefGoogle Scholar
  128. Rieger P-G, Knackmuss HJ (1995) Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 1–18CrossRefGoogle Scholar
  129. Rieger P-G, Meier H, Gerle M, Vogt U, Groth T, Knackmuss H-J (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123CrossRefGoogle Scholar
  130. Rittmann BE et al (1994) In situ bioremediation, vol 61–63, no 205. 2nd edn. Noyes Publications, Park Ridge, pp 219–220 Google Scholar
  131. Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (1999) Acute toxicity of 2,4,6-trinitrotoluene in earthworm Eisenia andrei. Ecotoxicol Environ Safety 44:311–321CrossRefGoogle Scholar
  132. Rocheleau S, Kuperman RG, Martel M, Paquet L, Bardai G, Wong S, Sarrazin M, Dodard S, Gong P, Hawari J, Checkai RT, Sunahara GI (2006) Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil. Chemosphere 62:545–558CrossRefGoogle Scholar
  133. Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2):73–81CrossRefGoogle Scholar
  134. Ryon MG (1987) Water quality criteria for 2,4,6-trinitrotoluene (TNT). ORNL-6304, Oak Ridge National Laboratory, Oak Ridge, TNGoogle Scholar
  135. Sagi-Ben Moshe S, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238CrossRefGoogle Scholar
  136. Sanderman H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241CrossRefGoogle Scholar
  137. Sarlauskas J, Nemeikaite-Ceniene A, Anusevicius Z, Miseviciene L, Julvez MM, Medina M, Gomez-Moreno C, Cenas N (2004) Flavoenzyme-catalyzed redox cycling of hydroxylamino- and amino metabolites of 2,4,6-trinitrotoluene: Implications for their cytotoxicity. Arch Biochem Biophys 425:184–192CrossRefGoogle Scholar
  138. Scheibner K, Hofrichter M (1998) Conversion of aminonitrotoluenes by fungal manganese peroxidase. J Basic Microbiol 38:51–59CrossRefGoogle Scholar
  139. Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensevely mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457CrossRefGoogle Scholar
  140. Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha jmp134. Appl Environ Microbiol 65:2317–2323Google Scholar
  141. Schroder P (2007) Exploiting plant metabolism for the phytoremediation of organic xenobiotics. In: Willey N (ed) Phytoremediation: methods and reviews. Humana Press Inc, TotowaGoogle Scholar
  142. Shah MM, Spain JC (1996) Elimination of nitrite from the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) catalyzed by ferredoxin NADP oxidoreductase from spinach. Biochem Biophys Res Commun 220:563–568CrossRefGoogle Scholar
  143. Sheibani G, Naeimpoor F, Hejazi P (2011) Screening effective factors in slurry phase bioremediation of 2,4,6-Trinitrotoluene (TNT) contaminated soil. Iranian J Chem Eng 8(2):29–40Google Scholar
  144. Siciliano SD, Gong P, Sunahara GI, Greer CW (2000) Assessment of 2,4,6-trinitrotoluene toxicity in field soils by pollution-induced community tolerance, denaturing gradient gel electrophoresis, and seed germination assay. Environ Toxicol Chem 19:2154–2160CrossRefGoogle Scholar
  145. Solyanikova IP, Baskunov BP, Baboshin MA, Saralov AI, Golovlevaa LA (2012) Detoxification of high concentrations of trinitrotoluene by bacteria. Appl Biochem Microbiol 48(1):21–27CrossRefGoogle Scholar
  146. Soojhawon I, Lokhande PD, Kodam KM, Gawai KR (2005) Biotransformation of nitroaromatics and their effects on mixed function oxidase system. Enzyme Microb Technol 37:527–533CrossRefGoogle Scholar
  147. Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555CrossRefGoogle Scholar
  148. Spain JC, Hughes JB, Knackmuss H-J (eds) (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press, Boca RatonGoogle Scholar
  149. Stahl JD, Aust SD (1993a) Plasma membrane dependent reduction of 2,4,6-TNT by Phanerochaete chrysosporium. Biochem Biophys Res Commun 192:471–476CrossRefGoogle Scholar
  150. Stahl JD, Aust SD (1993b) Metabolism and detoxification of TNT by Phanerochaete chrysosporium. Biochem Biophys Res Comm 192:477–482CrossRefGoogle Scholar
  151. Stahl JD, Aust SD (1995) Biodegradation of 2,4,6-trinitrotoluene by the white rot fungus Phanerochaete chrysosporium. In: Spain JC (ed) Biodegradation of nitroaromatic compounds. Plenum Press, New York, pp 117–134CrossRefGoogle Scholar
  152. Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: low-dose hormesis and high-dose mortality. Environ Toxicol Chem 21:1475–1482Google Scholar
  153. Stenuit BA, Agathos SN (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064CrossRefGoogle Scholar
  154. Stenuit B, Eyers L, El Fantroussi S, Agathos SN (2005) Promising strategies for the mineralisation of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol 4:39–60CrossRefGoogle Scholar
  155. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Agathos SN (2006) Aerobic growth on 2,4,6-trinitrotoluene (TNT) as sole nitrogen source by Escherichia coli and evidence of TNT denitration with whole cells and cell-free extracts. Appl Environ Microbiol 72:7945–7948CrossRefGoogle Scholar
  156. Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan J-L, Matthijs S, Cornelis P, Agathos SN (2009) Denitration of 2,4,6-trinitrotoluene in aqueous solutions using small-molecular-weight catalyst(s) secreted by Pseudomonas aeruginosa ESA-5. Environ Sci Technol 43:2011–2017CrossRefGoogle Scholar
  157. Subramanian M, Oliver DJ, Shanks JV (2006) TNT phytotransformation pathway characteristics in Arabidopsis: role of aromatic hydroxylamines. Biotechnol Proc 22:208–216CrossRefGoogle Scholar
  158. Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850CrossRefGoogle Scholar
  159. Thorn KA, Kennedy KR (2002) 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose. Environ Sci Technol 36:3787–3796CrossRefGoogle Scholar
  160. Travis E, Hannink N, Vandergast C, Thompson I, Rosser S, Bruce N (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. Environ Sci Technol 41:5854–5861CrossRefGoogle Scholar
  161. Tront J, Hughes J (2005) Oxidative microbial degradation of 2,4,6-trinitrotoluene via 3-methyl-4,6-dinitrocatechol. Environ Sci Tech 39:4540–4549CrossRefGoogle Scholar
  162. Ullah H, Shah AA, Hasan F, Hameed A (2010) Biodegradation of trinitrotoluene by immobilized Bacillus sp. Yre1. Pakistan J Bot 42(5):3357–3367Google Scholar
  163. Urbanski T (1984) Chemistry and technology of explosives, vol. 4. Pergamon Press Ltd, Oxford, pp 678Google Scholar
  164. US Army (1986) Demilitarization of conventional ordnance: Priorities for data base assessments of environmental contaminants. Frederick, MD: U.S. Army Medical Research and Development Command, Fort Detrick. Document no. AD UCRL-15902Google Scholar
  165. USEPA (1989) Treatability potential for EPA listed hazardous wastes in soil. Report no. EPA/600/S289/011. Ada, OK: U.S. Environmental Protection Agency, Robert S. Kerr Environmental Research Laboratory. Document no. PB89-166581Google Scholar
  166. USEPA (1993) Integrated risk information system (IRIS). Risk estimate for carcinogenicity and reference dose for oral exposure for 2, 4, 6-trinitrotoluene. Office of Health and Environmental Assessment. US Environmental Protection Agency, Washington, DCGoogle Scholar
  167. USEPA (2011) US Environmental Protection Agency. National priorities list. Accessed 11 May 2011
  168. Van Aken B, Godefroid LM, Peres CM, Naveau H, Agathos SN (1999) Mineralization of 14C-ring labeled 4-hydroxylamino-2,6-dinitrotoluene by manganese-dependent peroxidase of the white-rot basidiomycete Phlebia radiata. J Biotechnol 68:159–169CrossRefGoogle Scholar
  169. Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5, 7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues(Populus deltoides x nigra DN34). Appl Environ Microbiol 70:508–517CrossRefGoogle Scholar
  170. Van Dillewijn P, Caballero A, Wittich R, Ramos JL (2008) Subfunctionality of enzymatic activities in hydride transferases of the old yellow enzyme family of flavoproteins of pseudomonas putida. Appl Environ Microbiol 74:6703–6708CrossRefGoogle Scholar
  171. Vanderberg LA, Perry JJ, Unkefer PJ (1995) Catabolism of 2,4,6-trinitrotoluene by Mycobacterium vaccae. Appl Microbiol Biotechnol 43:937–945CrossRefGoogle Scholar
  172. Vila M, Pascal-Lorber S, Rathahao E, Debrauwer L, Canlet C, Laurent F (2005) Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension cultures. Environ Sci Technol 39:663–672CrossRefGoogle Scholar
  173. Vorbeck C, Lenke H, Fischer P, Knackmuss H-J (1994) Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol 176:932–934Google Scholar
  174. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss H-J (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252Google Scholar
  175. Wang C, Li Y, Liu Z, Wang P (2009) Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida. Bull Environ Contam Toxicol 83:865–868CrossRefGoogle Scholar
  176. Wang Z, Ye Z, Zhang M, Bai X (2010) Degradation of 2,4,6-trinitrotoluene (TNT) by immobilized microorganism-biological filter. Process Biochem 45:993–1001CrossRefGoogle Scholar
  177. Wayment DG, Bhadra R, Lauritzen J, Hughes JB, Shanks JV (1999) A transient study of the formation of conjugates during TNT metabolism by plant tissues. Int J Phytoremed 1:227–239CrossRefGoogle Scholar
  178. Wikstrom P, Andersson A-C, Nygren Y, Sjostrom J, Forsman M (2000) Influence of TNT transformation on microbial community structure in four different lake microcosms. J Appl Microbiol 89:302–308CrossRefGoogle Scholar
  179. Wilbrand J (1863) Notiz uber Trinitrotoluol. A nnalen der Chemie und Pharmacie 128(2):178–179CrossRefGoogle Scholar
  180. Williams RE, Rathbone DA, Scrutton NS, Bruce NC (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70:3566–3574CrossRefGoogle Scholar
  181. Wittich RM, Haidour A, Van Dillewijn P, Ramos JL (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739CrossRefGoogle Scholar
  182. Wittich R-M, Ramos JL, Van Dillewijn P (2009) Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-Source for growth. Environ Sci Technol 43(8):2773–2776CrossRefGoogle Scholar
  183. Woollen BH, Hall MG, Craig R, Steel GT (1986) Trinitrotoluene assessment of occupational absorption during manufacture of explosives. Br J Ind Med 43:465–473Google Scholar
  184. Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J Microbiol Biotechnol 20(2):117–135CrossRefGoogle Scholar
  185. Yinon J (1990) Toxicity and metabolism of explosives. CRC Press, Boca RatonGoogle Scholar
  186. Yinon J, Zitrin S (1993) Modern methods and applications in analysis of explosives. Wiley, New YorkGoogle Scholar
  187. Zaripov SA, Naumov AV, Abdrakhmanova JF, Garusov AV, Naumova RP (2002) Models of 2,4,6-Trinitrotoluene (TNT) initial conversion by yeast. FEMS Microbiol Lett 217:213–217CrossRefGoogle Scholar
  188. Zhu B, Peng R-H, Fu X-Y, Jin X-F, Zhao W et al (2012) Enhanced transformation of TNT by Arabidopsis plants expressing an old yellow enzyme. PLoS ONE 7(7):e39861CrossRefGoogle Scholar
  189. Ziganshin AM, Gerlach R, Naumenko EA, Naumova RP (2010) Aerobic degradation of 2,4,6-trinitrotoluene by the yeast strain Geotrichum candidum AN-Z4. Microbiology 79:199–205CrossRefGoogle Scholar
  190. Zou L, Lu D, Liu Z (2012) Pathways for degrading TNT by Thu-Z: a Pantoea sp. strain. Appl Biochem Biotechnol 168:1976–1988CrossRefGoogle Scholar
  191. Zylstra GJ, Bang S-W, Newman LM, Perry LL (2000) Microbial degradation of mononitrophenols and mononitrobenzoates. In: Spain JC, Highes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compound and explosives. Lewis Publishers, Boca Raton, pp 145–160Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sikandar I. Mulla
    • 1
  • Manjunatha P. Talwar
    • 1
  • Harichandra Z. Ninnekar
    • 1
    Email author
  1. 1.Department of BiochemistryKarnatak UniversityDharwadIndia

Personalised recommendations