Advertisement

Biodegradation of Nitrophenol Compounds

  • Nobutada KimuraEmail author
  • Wataru Kitagawa
  • Yoichi Kamagata
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Nitrophenol compounds have been used in a number of ways in medicines, explosives, and pesticides (Munnecke 1976). Due to the intense yellow color of the phenolate anion and pH reactivity (p-nitrophenol is colorless at pH 5.6 and the corresponding phenolate anion has a maximum yellow color at pH 7.6), nitrophenols are often used directly in titrations as indicators. Nitrophenols are also used in monitoring the enzyme activity, such as ß-galactosidase activity through detection of nitrophenol moiety and concomitant formation of the yellow color. Picric acid, also called 2,4,6-trinitrophenol, has been extensively used as a military explosive. In addition picric acid has been also used as a yellow dye, as an antiseptic and in the synthesis of chloropicrin, or nitrotrichloromethane, CCl3NO2, a powerful insecticide.

Keywords

Picric Acid Toxic Release Inventory Clostridium Pasteurianum Janthino Bacterium Phenolate Anion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agency for Toxic Substances and Disease Registry (1992) Toxicological profile for nitrophenol. Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  2. Alberts B, Bray D, Lewis L, Raff M, Roberts K, Watoson JD (1989) Molecular biology of the cell, 2nd edn. Garland, New YorkGoogle Scholar
  3. Behrend C, Heesche-Wagner K (1999) Formation of hydride-meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl Environ Microbiol 65:1372–1377Google Scholar
  4. Bhushan B, Chauhan A, Samanta SK, Jain RK (2000) Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 274:626–630CrossRefGoogle Scholar
  5. Blasco R, Moore E, Wray V, Pieper D, Timmis K, Castillo F (1999) 3-nitroadipate, a metabolic intermediate for mineralization of 2,4-dinitrophenol by a new strain of a Rhodococcus species. J Bacteriol 181:149–152Google Scholar
  6. Boyd SA, Shelton DR, Berry D, Tiedje JM (1983) Anaerobic biodegradation of phenolic-compounds in digested-sludge. Appl Environ Microbiol 46:50–54Google Scholar
  7. Bruhn C, Lenke H, Knackmuss HJ (1987) Nitrosubstituted aromatic-compounds as nitrogen-source for bacteria. Appl Environ Microbiol 53:208–210Google Scholar
  8. Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740CrossRefGoogle Scholar
  9. Dabrock B, Kesseler M, Averhoff B, Gottschalk G (1994) Identification and characterization of a transmissible linear plasmid from Rhodococcus-Erythropolisbd2 that encodes isopropylbenzene and trichloroethene catabolism. Appl Environ Microbiol 60:853–860Google Scholar
  10. Dickel O, Knackmuss HJ (1991) Catabolism of 1,3-dinitrobenzene by Rhodococcus sp. Qt-1. Arch Microbiol 157:76–79CrossRefGoogle Scholar
  11. Don RH, Pemberton JM (1981) Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686Google Scholar
  12. Ebert S, Rieger PG, Knackmuss HJ (1999) Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol 181:2669–2674Google Scholar
  13. Ebert S, Fischer P, Knackmuss HJ (2001) Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 12:367–376CrossRefGoogle Scholar
  14. Ecker S, Widmann T, Lenke H, Dickel O, Fischer P, Bruhn C, Knackmuss HJ (1992) Catabolism of 2,6-dinitrophenol by Alcaligenes-Eutrophusjmp 134 and jmp 222. Arch Microbiol 158:149–154CrossRefGoogle Scholar
  15. EPA US (1995) The Emergency Planning and Community Right-to-Know Act (EPCRA) list of hazardous and toxic chemicals, EPA 745/K-95-052. US EPA, CincinnatiGoogle Scholar
  16. Gisi D, Stucki G, Hanselmann KW (1997) Biodegradation of the pesticide 4,6-dinitro-ortho-cresol by microorganisms in batch cultures and in fixed-bed column reactors. Appl Microbiol Biotechnol 48:441–448CrossRefGoogle Scholar
  17. Gorontzy T, Kuver J, Blotevogel KH (1993) Microbial transformation of nitroaromatic compounds under anaerobic conditions. J Gen Microbiol 139:1331–1336CrossRefGoogle Scholar
  18. Groenewegen PE, Breeuwer P, van Helvoort JM, Langenhoff AA, de Vries FP, de Bont JA (1992) Novel degradative pathway of 4-nitrobenzoate in Comamonas acidovorans NBA-10. J Gen Microbiol 138(8):1599–1605CrossRefGoogle Scholar
  19. Haigler BE, Wallace WH, Spain JC (1994) Biodegradation of 2-nitrotoluene by Pseudomonas sp. strain js42. Appl Environ Microbiol 60:3466–3469Google Scholar
  20. Hanne LF, Kirk LL, Appel SM, Narayan AD, Bains KK (1993) Degradation and induction specificity in Actinomycetes that degrade p-nitrophenol. Appl Environ Microbiol 59:3505–3508Google Scholar
  21. Hanstein WG (1976) Uncoupling of oxidative-phosphorylation. Biochim Biophys Acta 456:129–148CrossRefGoogle Scholar
  22. Heitkamp MA, Camel V, Reuter TJ, Adams WJ (1990) Biodegradation of para-Nitrophenol in an aqueous waste stream by immobilized bacteria. Appl Environ Microbiol 56:2967–2973Google Scholar
  23. Hess TF, Schmidt SK, Silverstein J, Howe B (1990) Supplemental substrate enhancement of 2,4-dinitrophenol mineralization by a bacterial consortium. Appl Environ Microbiol 56:1551–1558Google Scholar
  24. Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Appl Environ Microbiol 60:3030–3032Google Scholar
  25. Kadiyala V, Spain JC (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484Google Scholar
  26. Katsivela E, Wray V, Pieper DH, Wittich RM (1999) Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl Environ Microbiol 65:1405–1412Google Scholar
  27. Keith LH, Telliard WA (1979) Priority pollutants i-a perspective view. Environ Sci Technol 13:416–423CrossRefGoogle Scholar
  28. Kimura N, Urushigawa Y (2001) Metabolism of dibenzo-p-dioxin and chlorinated dibenzo-p-dioxin by a gram-positive bacterium, Rhodococcus opacus SAO 101. J Biosci Bioeng 92:138–143Google Scholar
  29. Kimura N, Shinozaki Y, Suwa Y, Urushigawa Y (2000) Phylogenetic and phenotypic relationships of microorganisms that degrade uncoupler compound, 2,4-dinitrophenol. J Gen Appl Microbiol 46:317–322CrossRefGoogle Scholar
  30. Kimura N, Shinozaki Y, Lee TH, Yonezawa Y (2003) The microbial community in a 2,4-dinitrophenol-digesting reactor as revealed by 16S rDNA gene analysis. J Biosci Bioeng 96:70–75Google Scholar
  31. Kimura N, Kitagawa W, Mori T, Nakashima N, Tamura T, Kamagata Y (2006) Genetic and biochemical characterization of the dioxygenase involved in lateral dioxygenation of dibenzofuran from Rhodococcus opacus strain SAO101. Appl Microbiol Biotechnol 73:474–484CrossRefGoogle Scholar
  32. Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902CrossRefGoogle Scholar
  33. Kosono S, Maeda M, Fuji F, Arai H, Kudo T (1997) Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ Microbiol 63:3282–3285Google Scholar
  34. Kristanti RA, Kanbe M, Hadibarata T, Toyama T, Tanaka Y, Mori K (2012) Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environ Sci Pollut Res Intl 19:1852–1858CrossRefGoogle Scholar
  35. Kuda T, Kyoi D, Takahashi H, Obama K, Kimura B (2011) Detection and isolation of p-nitrophenol-lowering bacteria from intestine of marine fishes caught in Japanese waters. Marine Pollut Bull 62:1622–1627CrossRefGoogle Scholar
  36. Lenke H, Knackmuss HJ (1992) Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24–2. Appl Environ Microbiol 58:2933–2937Google Scholar
  37. Lenke H, Knackmuss H (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol 62:784–790Google Scholar
  38. Lenke H, Pieper DH, Bruhn C, Knackmuss HJ (1992) Degradation of 2,4-dinitrophenol by 2 Rhodococcus erythropolisstrains, Hl 24–1 and Hl 24–2. Appl Environ Microbiol 58:2928–2932Google Scholar
  39. Meulenberg R, Pepi M, de Bont JA (1996) Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation 7:303–311CrossRefGoogle Scholar
  40. Michan C, Delgado A, Haidour A, Lucchesi G, Ramos JL (1997) In vivo construction of a hybrid pathway for metabolism of 4-nitrotoluene in Pseudomonas fluorescens. J Bacteriol 179:3036–3038Google Scholar
  41. Munnecke DM (1976) Enzymatic-hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32:7–13Google Scholar
  42. Munnecke DM, Hsieh DPH (1974) Microbial decontamination of parathion and p-nitrophenol in aqueous-media. Appl Microbiol 28:212–217Google Scholar
  43. Munnecke DM, Hsieh DPH (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69Google Scholar
  44. Nadeau LJ, Spain JC (1995) Bacterial-degradation of m-nitrobenzoic acid. Appl Environ Microbiol 61:840–843Google Scholar
  45. Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil—isolation of hydrolyzing bacteria. Soil Biol Biochem 14:219–222CrossRefGoogle Scholar
  46. Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol 59:2520–2525Google Scholar
  47. Nishino SF, Spain JC (1995) Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain Js765. Appl Environ Microbiol 61:2308–2313Google Scholar
  48. Perry LL, Zylstra GJ (2007) Cloning of a gene cluster involved in the catabolism of p-nitrophenol by Arthrobacter sp. strain JS443 and characterization of the p-nitrophenol monooxygenase. J Bacteriol 189:7563–7572CrossRefGoogle Scholar
  49. Prakash D, Chauhan A, Jain RK (1996) Plasmid-encoded degradation of p-nitrophenol by Pseudomonas cepacia. Biochem Biophys Res Commun 224:375–381CrossRefGoogle Scholar
  50. Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach AL et al (1996) Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol 16:319–324CrossRefGoogle Scholar
  51. Raymond DGM, Alexander M (1971) Microbial metabolism and cometabolism of nitrophenols. Pest Biochem Physiol 1:123–130CrossRefGoogle Scholar
  52. Rhys-Williams W, Taylor SC, Williams PA (1993) A novel pathway for the catabolism of 4-nitrotoluene by Pseudomonas. J Gen Microbiol 139:1967–1972CrossRefGoogle Scholar
  53. Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ (1999) Hydride-meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol 181:1189–1195Google Scholar
  54. Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, Sensen C et al (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181:1585–1602Google Scholar
  55. Russ R, Walters DM, Knackmuss HJ, Rouviere PE (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca RatonGoogle Scholar
  56. Schafer A, Harms H, Zehnder AJB (1996) Biodegradation of 4-nitroanisole by two Rhodococcus spp. Biodegradation 7:249–255CrossRefGoogle Scholar
  57. Schenzle A, Lenke H, Fischer P, Williams PA, Knackmuss H (1997) Catabolism of 3-nitrophenol by Ralstonia eutropha JMP 134. Appl Environ Microbiol 63:1421–1427Google Scholar
  58. Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323Google Scholar
  59. Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Canadian J Microbiol 35:1105–1110CrossRefGoogle Scholar
  60. Shimizu S, Kobayashi H, Masai E, Fukuda M (2001) Characterization of the 450-kb linear plasmid in a polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl Environ Microbiol 67:2021–2028CrossRefGoogle Scholar
  61. Shinozaki Y, Kimura N, Nakahara T (2002) Difference in degrading alpha-nitrophenol between indigenous bacteria in a reactor. J Biosci Bioeng 93:512–514Google Scholar
  62. Simpson JR, Evans WC (1953) The metabolism of nitrophenols by certain bacteria. Biochem J 55:R24–R24Google Scholar
  63. Spain JC, Gibson DT (1991) Pathway for biodegradation of para-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819Google Scholar
  64. Spiess T, Desiere F, Fischer P, Spain JC, Knackmuss HJ, Lenke H (1998) A new 4-nitrotoluene degradation pathway in a Mycobacterium strain. Appl Environ Microbiol 64:446–452Google Scholar
  65. Sudhakar B, Siddaramappa R, Wahid PA, Sethunathan N (1978) Conversion of p-nitrophenol to 4-nitrocatechol by a Pseudomonas sp. Antonie Van Leeuwenhoek 44:171–176CrossRefGoogle Scholar
  66. Takahara M (1980) Biological treatment of wastewater. Chikyusha, TokyoGoogle Scholar
  67. Takeo M, Murakami M, Niihara S, Yamamoto K, Nishimura M, Kato D, Negoro S (2008) Mechanism of 4-nitrophenol oxidation in Rhodococcus sp. strain PN1: characterization of the two-component 4-nitrophenol hydroxylase and regulation of its expression. J Bacteriol 190:7367–7374CrossRefGoogle Scholar
  68. Thorne PG (1995) Development of a field method for quantifying ammonium picrate and picric acid in soil and water. In. USACE Cold Regions Research and Engineering LabGoogle Scholar
  69. TRI (2002) Toxics release inventory. U. S Environmental Protection Agency, CincinnatiGoogle Scholar
  70. van der Meer JR, van Neerven AR, de Vries EJ, de Vos WM, Zehnder AJ (1991) Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173:6–15Google Scholar
  71. Vedler E, Koiv V, Heinaru A (2000) TfdR, the LysR-type transcriptional activator, is responsible for the activation of the tfdCB operon of Pseudomonas putida 2, 4-dichlorophenoxyacetic acid degradative plasmid pEST4011. Gene 245:161–168CrossRefGoogle Scholar
  72. Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ (1998) Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol 64:246–252Google Scholar
  73. Walsh ME, JT, Schnitker PS, Elwell JW, Stutz MH (1993) Evaluation of SW-846 method 8330 for characterization of sites contaminated with residues of high explosives. In: Cold Region Research and Engineering Laboratory, p 17Google Scholar
  74. Walters DM, Russ R, Knackmuss HJ, Rouviere PE (2001) High-density sampling of a bacterial operon using mRNA differential display. Gene 273:305–315CrossRefGoogle Scholar
  75. Worsey MJ, Franklin FCH, Williams PA (1978) Regulation of degradative pathway enzymes coded for by Tol plasmid (Pwwo) from Pseudomonas putida Mt-2. J Bacteriol 134:757–764Google Scholar
  76. Xing XH, Shiragami N, Unno H (1995) Simultaneous removal of carbonaceous and nitrogenous substances in waste-water by a continuous-flow fluidized-bed bioreactor. J Chem Eng Japan 28:525–530CrossRefGoogle Scholar
  77. Xing XH, Inoue T, Tanji Y, Unno H (1999) Enhanced microbial adaptation to p-nitrophenol using activated sludge retained in porous carrier particles and, simultaneous removal of nitrite released from degradation of p-nitrophenol. J Biosci Bioeng 87:372–377CrossRefGoogle Scholar
  78. Yamamoto K, Nishimura M, Kato D, Takeo M, Negoro S (2011) Identification and characterization of another 4-nitrophenol degradation gene cluster, nps, in Rhodococcus sp. strain PN1. J Biosci Bioeng 111:687–694CrossRefGoogle Scholar
  79. Zeyer JaK PC (1984) Degradation of o-nitrophenol and m-nitrophenol by a Pseudomonas putida. J Agric Food Chem 32:238–242CrossRefGoogle Scholar
  80. Zhao JS, Ward OP (1999) Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge. Canadian J Microbiol 45:427–432CrossRefGoogle Scholar
  81. Zylstra GJ, Bang S-W, Newman LM, Perry LL (2000) Microbial degradation of mononitrophenols and mononitrobenzoates. In: Newman LM, Zylstra GJ, Bang S-W, Perry LL (eds) Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, USA, pp 145–160Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nobutada Kimura
    • 1
    Email author
  • Wataru Kitagawa
    • 1
  • Yoichi Kamagata
    • 1
  1. 1.Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations