Skip to main content

A Piezo-resistive, Temperature Compensated, MEMS-Based Frequency Synthesizer

  • Chapter
  • First Online:

Abstract

This paper describes a frequency synthesizer based on a MEMS resonator. Uniquely, the piezo-resistive properties of silicon are exploited to read out the resonator, resulting in low impedance levels at resonance frequencies up to several 100 MHz. A 55 MHz MEMS oscillator with a phase noise of −128 dBc/Hz @ 1 kHz offset and a −140 dBc/Hz noise floor has been realized. The oscillator is combined with a programmable PLL to realize a complete frequency synthesizer that can generate output frequencies ranging from 25 MHz to 200 MHz. It achieves ±20 ppm frequency accuracy over temperatures ranging from −20°C to +85°C, and draws 15 mA from a 2.5 V supply at an output frequency of 25 MHz.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.T.M. Van Beek, R. Puers, A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22 013001, 35pp (2012)

    Google Scholar 

  2. C.S. Vaucher, Architectures for RF Frequency Synthesizers (Kluwer, 2002), ISBN1-4020-7120-5, pp. 70

    Google Scholar 

  3. J.H. Kuypers, G. Zolfagharkhani, A. Gaidarzhy, R. Rebel, D.M. Chen, S. Stanley, D. LoCascio, K.J. Schoepf, M. Crowley, P. Mohanty, High Performance MEMS Oscillators for Communications Applications (Chiba, 2010)

    Google Scholar 

  4. J.T.M. Van Beek, G.J.A.M. Verheijden, G.E.J. Koops, K. Le Phan, C. Van der Avoort, J. Van Wingerden, D. Badaroglu Ernur, J.J.M. Bontemps, Scalable 1.1 GHz fundamental mode piezo-resistive silicon MEMS Resonator, in IEEE International Electron Devices Meeting, IEDM, 2007, Washington, DC, USA, pp. 411–4, 10–12 Dec 2007

    Google Scholar 

  5. D. Weinstein, S.A. Bhave, Internal dielectric transduction in bulk-mode resonators. J. Microelectromech. Syst. 18, 1401–8 (2009)

    Article  Google Scholar 

  6. W. Wang, L.C. Popa, R. Marathe, D. Weinstein, An unreleased mm-wave resonant body transistor, in Proceeding MEMS, 2011, Cancun, Mexico, pp. 1341–4

    Google Scholar 

  7. J.T.M. Van Beek, P.G. Steeneken, B. Giesbers, A 10 MHz piezoresistive MEMS resonator with high Q, in IEEE International Frequency Control Symposium and Exposition, 2006, Miami, Florida, USA, pp. 475–80, 4–7 June 2006

    Google Scholar 

  8. J.T.M. Van Beek, K. Le Phan, G.J.A.M. Verheijden, G.E.J. Koops, C. Van der Avoort, J. Van Wingerden, D. Ernur Badaroglu, J.J.M. Bontemps, R. Puers, A piezo-resistive resonant MEMS amplifier, in IEEE International Electron Devices Meeting IEDM 2008 vol 1–4, pp. 667–70

    Google Scholar 

  9. P.G. Steeneken, K. Le Phan, M.J. Goossens, G.E.J. Koops, G.J.A.M. Brom, C. Van der Avoort, J.T.M. Van Beek, Piezoresistive heat engine and refrigerator. Nat. Phys. 7, 354–9 (2011)

    Article  Google Scholar 

  10. J.T.M. Van Beek, H. Loebl, F.W.M. Van Helmont, A MEMS resonator, a method of manufacturing thereof, and a MEMS oscillator US patent 7847649, Issue date: 7 Dec 2010

    Google Scholar 

  11. C. Van der Avoort, J. Van Wingerden, J.T.M. Van Beek, The effects of thermal oxidation of a MEMS resonator on temperature drift and absolute frequency, in IEEE 22nd International Conference on Micro Electro Mechanical Systems, MEMS 2009, Sorrento, Italy, pp. 654–6, 25–29 Jan 2009

    Google Scholar 

Download references

Acknowledgements

We would like to thank Harry Houterman, Friso Jedema, Sumy Jose, Erik-Jan Lous, Joost Melai, Edwin Orij, Nivesh Rai, Chris Rittersma, Kirsten Rongen, Jos Sistermans, Frank Swartjes, and Peter van der Velden from NXP for their contributions on product reliability, testability, and manufacturability. Many thanks go to Tjeu van Ansem and Peter Vermeeren from NXP, and AXIOM-IC for their help in ASIC design. Micha in’t Zandt from NXP, and IMEC are gratefully acknowledged for their support in processing the MEMS wafers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. M. van Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Beek, J.T.M. et al. (2014). A Piezo-resistive, Temperature Compensated, MEMS-Based Frequency Synthesizer. In: Baschirotto, A., Makinwa, K., Harpe, P. (eds) Frequency References, Power Management for SoC, and Smart Wireless Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-01080-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01080-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01079-3

  • Online ISBN: 978-3-319-01080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics