Skip to main content

mm-Wave Silicon: Smarter, Faster, and Cheaper Communication and Imaging

  • Chapter
  • First Online:
Frequency References, Power Management for SoC, and Smart Wireless Interfaces

Abstract

This paper will highlight three mm-wave integrated circuit systems appropriate for communication and imaging. The first chip is an efficient transmitter for the realization of a mm-wave system using digital modulation and spatial quadrature power combining. The second system is a prototype 260 GHz short range chip-to-chip communication system in CMOS using on-chip antennas. The final system is a 3D imager with a 90 GHz carrier and 25-parsec pulse width, potentially applicable for HCI (gesture recognition) and medical imaging. These systems represent new application domains for mm-wave electronics where the high volume/low cost of silicon technology can be exploited to realize new functionalities and data rates, addressing important hurdles in the expansion of our communication networks and opening up the ability to see objects in a completely new way using 3D mm-wave imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emami et al., A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications, in ISSCC Digest of Technical Papers, San Francisco, Feb 2011, pp. 164–165

    Google Scholar 

  2. S. Emami, C. Doan, A.M. Niknejad, R. Brodersen, A highly integrated 60 GHz CMOS front-end receiver, in ISSCC Digest of Technical Papers, San Francisco, Feb 2007, pp. 190–191

    Google Scholar 

  3. M. Tabesh, J. Chen, C. Marcu, L.-K. Kong, E. Alon, and A.M. Niknejad, A 65 nm CMOS 4-channel sub-34mW/channel 60 GHz phased array transceiver, in ISSCC Digest of Technical Papers, San Francisco, Feb 2007, pp. 166–167

    Google Scholar 

  4. Valdes-Garcia et al., A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid State Circuits 45, 2757–2773 (2010)

    Google Scholar 

  5. J. Chen, A.M. Niknejad, A compact 1V 18.6 dBm 60GHz power amplifier in 65 nm CMOS, in ISSCC Digest of Technical Papers, San Francisco, Feb 2011, pp. 432–433

    Google Scholar 

  6. D. Chowdhury, Y. Lu, E. Alon, A.M. Niknejad, A 2.4 GHz mixed-signal polar power amplifier with low-power integrated filtering in 65 nm CMOS, in IEEE Custom Integrated Circuits Conference (CICC), San Jose, 2010

    Google Scholar 

  7. Xu et al., A flip-chip-packaged 25.3 dBm class-D outphasing power amplifier in 32 nm CMOS for WLAN application. IEEE J. Solid State Circuits 46, 1596–1605 (2011)

    Google Scholar 

  8. J. Chen et al., A digitally modulated mm-wave cartesian beamforming transmitter with quadrature spatial combining, ISSCC Digest of Technical Papers, San Francisco, Feb 2013, pp. 232–233

    Google Scholar 

  9. Floyd et al., Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters. IEEE J. Solid State Circuits 37, 543–552 (2002)

    Google Scholar 

  10. J.-D. Park, S. Kang, S.V. Thyagarajan, E. Alon, A.M. Niknejad, A 260 GHz fully integrated CMOS transceiver for wireless chip-to-chip communication, in Symposium on VLSI Circuits (VLSIC), Honolulu, 2012, pp. 48–49.

    Google Scholar 

  11. D. Huang, T.R. LaRocca, M.C.F. Chang, L. Samoska, A. Fung, R.L. Campbell, M. Andrews, Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid State Circuits 43, 2730–2738 (2008)

    Article  Google Scholar 

  12. J.-D. Park, S. Kang, A.M. Niknejad, A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS. IEEE J. Solid State Circuits 47, 2344–2354 (2012)

    Google Scholar 

  13. X. Li, S. Hagness, A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw. Wirel. Compon. Lett. 11(3), pp. 130–132 (2001)

    Article  Google Scholar 

  14. S. Callender, A. Niknejad, A phase-adjustable delay-locked loop utilizing embedded phase interpolation, in 2011 RFIC Symposium, Baltimore, June 2011

    Google Scholar 

  15. A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, A. Niknejad, A 94 GHz mm-wave to baseband pulsed-radar for imaging and gesture recognition, Symposium on VLSI Circuits (VLSIC), Honolulu, 2012, pp. 56–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Niknejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Niknejad, A.M. et al. (2014). mm-Wave Silicon: Smarter, Faster, and Cheaper Communication and Imaging. In: Baschirotto, A., Makinwa, K., Harpe, P. (eds) Frequency References, Power Management for SoC, and Smart Wireless Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-01080-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01080-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01079-3

  • Online ISBN: 978-3-319-01080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics