Skip to main content

A Monolithic CMOS Self-compensated LC Oscillator Across Temperature

  • Chapter
  • First Online:
Frequency References, Power Management for SoC, and Smart Wireless Interfaces
  • 2153 Accesses

Abstract

This paper describes a monolithic CMOS reference clock based on an LC oscillator. To achieve a low temperature coefficient, its LC tank is operated at a temperature-null phase. The result is a self-compensated oscillator (SCO) whose output can be programmed from 1 to 133 MHz and which draws 7 mA (no load) from a 3.3 V supply at 25 MHz. After a low cost room temperature trim, the SCO in both ceramic and plastic packages achieves a measured stability of ±50 ppm from −20°C to +70°C. At 133 MHz, its integrated jitter is 0.4 ps from 1.875 to 20 MHz, while at 25 MHz its period jitter is 2.7 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Bottom, A history of the quartz crystal industry in the USA, in Thirty Fifth Annual Frequency Control Symposium, 1981, pp. 3–12

    Google Scholar 

  2. C.S. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, in IEEE Ultrasonics Symposium, (Beijing, 2008), pp. 694–704

    Google Scholar 

  3. H. Nathanson, W. Newell, R. Wickstrom, J. Davis, J.R., The resonant gate transistor. Electron Devices, IEEE Trans. 14(3), 117–133 (1967)

    Google Scholar 

  4. DSC8001 Series PureSilcon TM Programmable CMOS Oscillator Datasheet, MK – Q – B – P – D – 090110–03–2 ed. by (Discera, San Jose, 2010)

    Google Scholar 

  5. MEMS Replacing Quartz Oscillators, Application Note SiT-AN10010 Review 1.1, (SiTime Corporation, Sunnyvale, 2009)

    Google Scholar 

  6. M.H. Perrott et al., A temperature-to-digital converter for a MEMS-based programmable oscillator with < ±0.5-ppm frequency stability and < 1ps integrated jitter. Solid-State Circuit IEEE J. 48(1), 276–291 (2013)

    Article  Google Scholar 

  7. M. Renata et al., Temperature-compensated high-stability silicon resonators. Appl. Phys. Lett. 90(24), 244107–3 (2007)

    Article  Google Scholar 

  8. Wan-Thai Hsu, C.T.-C. Nguyen, Geometric stress compensation for enhanced thermal stability in micromechanical resonators, in Proceedings, 1998 I.E. International Ultrasonics Symposium, (Sendain, 1998), pp. 945–948, 5–8 Oct 1998

    Google Scholar 

  9. Wan-Thai Hsu, C.T.-C. Nguyen, Stiffness-Compensated temperature-insensitive micromechanical resonators, in Technical Digest, 2002 I.E. International Micro Electro Mechanical Systems Conference, (Las Vegas, 2002), pp. 731–734, 20–24 Jan 2002

    Google Scholar 

  10. R.F. Adams, D.O. Pederson, Temperature sensitivity of frequency of integrated oscillators. IEEE J. Solid-State Circuit SC-3(4), 391–396 (1968)

    Article  Google Scholar 

  11. A.V. Boas, A. Olmos, A temperature compensated digitally trimmable on-chip IC oscillator with low voltage inhibit capability, in Proceeding IEEE International Symposium Circuits and Systems (ISCAS), vol. 1 (2004), pp. 501–504

    Google Scholar 

  12. K. Sandaresan, P.E. Allen, F. Ayazi, Process and temperature compensation in a 7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuit 41(2), 433–441 (2006)

    Article  Google Scholar 

  13. Y. Tokunaga et al., An on-chip CMOS relaxation oscillator with voltage averaging feedback. IEEE J. Solid-State Circuit 45(6), 1150–1158 (2010)

    Article  Google Scholar 

  14. eoSemi Unveils Silicon Oscillator Technology, Announces Shipment of First Silicon to Select Customers (Congleton, 2012), 13 Mar 2012

    Google Scholar 

  15. S. Mahdi Kashmiri, Kamran Souri, Kofi A. A. Makinwa, A scaled thermal-diffusivity-based 16 MHz frequency reference in 0.16 μm CMOS. IEEE J. Solid-State Circuit 47(7), 1535–1545 (2012)

    Google Scholar 

  16. J. Ebrahimi, Thermal diffusivity measurement of small silicon chips. J. Phys. D. Appl. 3, 236–239 (1970)

    Article  Google Scholar 

  17. Si500S Single-Ended Output Silicon Oscillator Review 1.0 5/11, (Silicon Laboratories, Austin)

    Google Scholar 

  18. M. McCorquodale et al., A 25-MHz self-referenced solid-state frequency source suitable for XO-replacement. Circ. Syst. I: Regul. Pap. IEEE Trans. 56(5), 943–956 (2009)

    Article  MathSciNet  Google Scholar 

  19. M.S. McCorquodale et al., A silicon Die as a frequency source, in Proceeding of IEEE International Frequency Control Symposium, (2010), pp. 103–108, 1–4 June 2010

    Google Scholar 

  20. 3DN Series CrystalFree TM Oscillator Preliminary Data Sheet (Integrated Device Technology, San Jose, 2012)

    Google Scholar 

  21. A. Ahmed, B. Hanafi, S. Hosny, N. Sinoussi, A. Hamed, M. Samir, M. Essam, A. El-Kholy, M. Weheiba, A. Helmy, A highly stable CMOS Self-Compensated Oscillator (SCO) based on an LC tank temperature null concept, in Proceeding IEEE International Frequency Control Symposium, 2011, pp. 1–5

    Google Scholar 

  22. N. Sinoussi, A. Hamed, M. Essam, A. El-Kholy, A. Hassanein, M. Saeed, A. Helmy, A. Ahmed, A single LC tank self-compensated CMOS oscillator with frequency stability of ±100 ppm from −40°C to 85°C, in Proceeding IEEE International Frequency Control Symposium, 2012, pp. 1–5

    Google Scholar 

  23. B. Hanafi, S. Hosny, A. Ahmed, Method, system and apparatus for accurate and stable LC-based reference oscillators, U.S. Patent 8, 072, 281B2, (2011) 6 Dec 2011

    Google Scholar 

  24. J. Groszkowski, Frequency of Self-Oscillations, (Oxford/Pergamon, 1964)

    Google Scholar 

  25. A. Mirzaei, M.E. Heidari, R. Bagheri, S. Chehrazi, A.A. Abidi, The quadrature LC oscillator: a complete portrait based on injection locking. Solid-State Circuit IEEE J. 42(9), 1916–1932 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and appreciate the design engineers of the Timing Products division, Digital, Layout and Product Engineering teams at Si-Ware Systems for their continuous efforts in the realization, characterization and testing of the SCO.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helmy, A., Sinoussi, N., Elkholy, A., Essam, M., Hassanein, A., Ahmed, A. (2014). A Monolithic CMOS Self-compensated LC Oscillator Across Temperature. In: Baschirotto, A., Makinwa, K., Harpe, P. (eds) Frequency References, Power Management for SoC, and Smart Wireless Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-01080-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01080-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01079-3

  • Online ISBN: 978-3-319-01080-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics