Skip to main content

Electromagnetic Transitions as a Probe of Nuclear Clustering

  • Chapter
Clusters in Nuclei, Volume 3

Part of the book series: Lecture Notes in Physics ((LNP,volume 875))

Abstract

Electromagnetic transitions can be considered as a complementary probe of clustering in nuclei. Through measuring the transition strength between candidate cluster states, it is possible to demonstrate the large associated nuclear deformation. This has been achieved in the case of light nuclei like 8Be where the ground state already has a strong cluster structure. In this chapter, we review a number of cases where electromagnetic transitions can be used to further our understanding of clustering, from heavy-ion radiative capture to superdeformation in alpha-conjugate nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Almqvist et al., Phys. Rev. Lett. 4, 515 (1960)

    Article  ADS  Google Scholar 

  2. D.A. Bromley, J.A. Kuehner, E. Almqvist, Phys. Rev. Lett. 4, 365 (1960)

    Article  ADS  Google Scholar 

  3. M. Freer, Rep. Prog. Phys. 70, 2149 (2007)

    Article  ADS  Google Scholar 

  4. R.R. Betts, A.H. Wuosmaa, Rep. Prog. Phys. 60, 819 (1996)

    Article  ADS  Google Scholar 

  5. J.L. Wood et al., Nucl. Phys. A 651, 323 (1999)

    Article  ADS  Google Scholar 

  6. E. Farnea et al., Nucl. Instrum. Methods A 621, 331 (2010)

    Article  ADS  Google Scholar 

  7. R. Guardiola et al., Nucl. Phys. A 679, 393 (2001)

    Article  ADS  Google Scholar 

  8. Y. Yamamoto, T. Togashi, K. Kato, Prog. Theor. Phys. 124, 315 (2010)

    Article  ADS  Google Scholar 

  9. R.B. Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, Phys. Rev. C 62, 014001 (2000)

    Article  ADS  Google Scholar 

  10. K. Langanke, C. Rolfs, Phys. Rev. C 33, 790 (1986)

    Article  ADS  Google Scholar 

  11. K. Langanke, C. Rolfs, Z. Phys. A 324, 307 (1986)

    ADS  Google Scholar 

  12. V.M. Datar, S. Kumar, D.R. Chakrabarty, V. Nanal, E.T. Mirgule, A. Mitra, H.H. Oza, Phys. Rev. Lett. 94, 122502 (2005)

    Article  ADS  Google Scholar 

  13. F. Hoyle, Astrophys. J. Suppl. Ser. 1, 121 (1954)

    Article  ADS  Google Scholar 

  14. C.W. Cook et al., Phys. Rev. 107, 508 (1957)

    Article  ADS  Google Scholar 

  15. E. Epelbaum, H. Krebs, D. Lee, U. Meissner, Phys. Rev. Lett. 106, 192501 (2011)

    Article  ADS  Google Scholar 

  16. M. Freer et al., Phys. Rev. C 80, 041303 (2009)

    Article  ADS  Google Scholar 

  17. B. Buck, C.B. Dover, J.P. Vary, Phys. Rev. C 11, 1803 (1975)

    Article  ADS  Google Scholar 

  18. M. Chernykh et al., Phys. Rev. Lett. 105, 022501 (2010)

    Article  ADS  Google Scholar 

  19. T. Yamada et al., J. Phys. Conf. Ser. 111, 012008 (2008)

    Article  ADS  Google Scholar 

  20. E. Vogt, H. McManus, Phys. Rev. Lett. 4, 518 (1960)

    Article  ADS  Google Scholar 

  21. D. Baye, P. Descouvemont, Nucl. Phys. A 419, 397 (1984)

    Article  ADS  Google Scholar 

  22. K. Langanke, O.S. van Roosmalen, Phys. Rev. C 29, 1358 (1984)

    Article  ADS  Google Scholar 

  23. R.L. McGrath, D. Abriola, J. Karp, T. Renner, S.Y. Zhu, Phys. Rev. C 24, 2374 (1981)

    Article  ADS  Google Scholar 

  24. F. Haas et al., Nuovo Cimento A 110, 989 (1997)

    Article  ADS  Google Scholar 

  25. A.M. Sandorfi, in Treatise on Heavy Ion Science, ed. by D.A. Bromley (Plenum, New York, 1985). Vol. 2, Sect. III and references therein

    Google Scholar 

  26. A.M. Nathan, A.M. Sandorfi, T.J. Bowles, Phys. Rev. C 24, 932 (1981)

    Article  ADS  Google Scholar 

  27. A.M. Sandorfi, L.R. Kilius, H.W. Lee, A.E. Litherland, Phys. Rev. Lett. 40, 1248 (1978)

    Article  ADS  Google Scholar 

  28. A.M. Sandorfi, J.R. Calarco, R.E. Rand, H.A. Schwettman, Phys. Rev. Lett. 45, 1615 (1980)

    Article  ADS  Google Scholar 

  29. B.R. Fulton et al., Phys. Lett. B 267, 325 (1991)

    Article  ADS  Google Scholar 

  30. B.R. Fulton et al., J. Phys. G 20, 151 (1994)

    Article  ADS  Google Scholar 

  31. N. Curtis et al., Phys. Rev. C 51, 1554 (1995)

    Article  ADS  Google Scholar 

  32. M.T. Collins, A.M. Sandorfi, D.H. Hoffmann, M.K. Salomaa, Phys. Rev. Lett. 49, 1553 (1982)

    Article  ADS  Google Scholar 

  33. D.G. Jenkins et al., Phys. Rev. C 71, 041301 (2005)

    Article  ADS  Google Scholar 

  34. D.G. Jenkins et al., Phys. Rev. C 76, 044310 (2007)

    Article  ADS  Google Scholar 

  35. D.A. Hutcheon et al., Nucl. Instrum. Methods Phys. Res. A 498, 190 (2003)

    Article  ADS  Google Scholar 

  36. S. Bishop et al., Phys. Rev. Lett. 90, 162501 (2003)

    Article  ADS  Google Scholar 

  37. P. Marley et al., Phys. Rev. C 84, 044332 (2011)

    Article  ADS  Google Scholar 

  38. C.L. Jiang et al., Nucl. Instrum. Methods A 554, 500 (2005)

    Article  ADS  Google Scholar 

  39. D. Branford, N. Gardner, I.F. Wright, Phys. Lett. B 36, 456 (1971)

    Article  ADS  Google Scholar 

  40. K. Kato, H. Bando, Prog. Theor. Phys. 62, 644 (1979)

    Article  ADS  Google Scholar 

  41. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996)

    Article  ADS  Google Scholar 

  42. R.E. Tribble, G.T. Garvey, J.R. Comfort, Phys. Lett. B 44, 366 (1973)

    Article  ADS  Google Scholar 

  43. H. Chandra, U. Mosel, Nucl. Phys. A 298, 151 (1978)

    Article  ADS  Google Scholar 

  44. S. Courtin et al., Acta Phys. Pol. B 42, 757 (2011)

    Article  Google Scholar 

  45. D. Lebhertz et al., AIP Conf. Proc. 1165, 331 (2009)

    Article  ADS  Google Scholar 

  46. P.J. Nolan, P.J. Twin, Annu. Rev. Nucl. Part. Sci. 38, 533 (1988)

    Article  ADS  Google Scholar 

  47. C.E. Svensson et al., Phys. Rev. Lett. 85, 2693 (2000)

    Article  ADS  Google Scholar 

  48. E. Ideguchi et al., Phys. Rev. Lett. 87, 222501 (2001)

    Article  ADS  Google Scholar 

  49. R. Middleton, J.D. Garrett, H.T. Fortune, Phys. Lett. B 39, 339 (1972)

    ADS  Google Scholar 

  50. Y. Taniguchi, M. Kimura, Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 76, 044317 (2007)

    Article  ADS  Google Scholar 

  51. M. Kimura, H. Horiuchi, Phys. Rev. C 69, 051304 (2004)

    Article  ADS  Google Scholar 

  52. Y. Taniguchi, Y. Kanada-En’yo, M. Kimura, Phys. Rev. C 80, 044316 (2009)

    Article  ADS  Google Scholar 

  53. S. Kubono et al., Nucl. Phys. A 457, 461 (1986)

    Article  ADS  Google Scholar 

  54. S. Kubono et al., Phys. Rev. C 33, 1524 (1986)

    Article  ADS  Google Scholar 

  55. J. Brenneisen et al., Z. Phys. A 352, 149 (1995)

    Article  ADS  Google Scholar 

  56. J. Brenneisen et al., Z. Phys. A 352, 279 (1995)

    Article  ADS  Google Scholar 

  57. J. Brenneisen et al., Z. Phys. A 352, 403 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge valuable discussions with Y. Kanada-En’yo and Y. Taniguchi. Sandrine Courtin and Florent Haas should be acknowledged for their careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Jenkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jenkins, D.G. (2014). Electromagnetic Transitions as a Probe of Nuclear Clustering. In: Beck, C. (eds) Clusters in Nuclei, Volume 3. Lecture Notes in Physics, vol 875. Springer, Cham. https://doi.org/10.1007/978-3-319-01077-9_2

Download citation

Publish with us

Policies and ethics