Skip to main content

Methodology

  • Chapter
  • First Online:
Fluorescence in Bio-inspired Nanotechnology

Part of the book series: Springer Theses ((Springer Theses))

  • 683 Accesses

Abstract

In this Chapter I will give a general presentation of the experimental techniques used in the work presented in this thesis. A more detailed description can be found in the materials and methods sections of the amended papers. The chapter covers different varieties of optical spectroscopy, i.e., analytical techniques based on interaction between light and matter. For a discussion on the underlying principles behind this, see Chapter 4 on photophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of single fluorescent molecules. Chem Phys Lett 174:553–557

    Article  CAS  Google Scholar 

  2. Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44:2642–2671

    Article  CAS  Google Scholar 

  3. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683

    Article  CAS  Google Scholar 

  4. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A Reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47:5465–5469

    Article  CAS  Google Scholar 

  5. Rasnik I, McKinney SA, Ha T (2006) Nonblinking and longlasting single-molecule fluorescence imaging. Nat Methods 3:891–893

    Article  CAS  Google Scholar 

  6. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  CAS  Google Scholar 

  7. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97:8206–8210

    Article  CAS  Google Scholar 

  8. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  CAS  Google Scholar 

  9. Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm). Nat Methods 3:793–795

    Article  CAS  Google Scholar 

  10. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47:6172–6176

    Article  CAS  Google Scholar 

  11. Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Meth 8:1027–1036

    Article  CAS  Google Scholar 

  12. Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic Gfp. Nature 478:204–208

    Article  CAS  Google Scholar 

  13. Heilemann M, Dedecker P, Hofkens J, Sauer M (2009) Photoswitches: key molecules for sub diffraction-resolution fluorescence imaging and molecular quantification. Laser Photon Rev 3:180–202

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hannestad .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hannestad, J. (2013). Methodology. In: Fluorescence in Bio-inspired Nanotechnology. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01068-7_7

Download citation

Publish with us

Policies and ethics