Skip to main content

Nanoscale Photonic Devices

  • Chapter
  • First Online:
  • 700 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Photonics is a subject area dealing with the emission, transmission, modulation, processing and sensing of light signals. A photonic device is an entity, constructed with the purpose to facilitate any or all of the above processes. This definition can be made almost indefinitely broad, requiring a much wider scope than this thesis for sufficient coverage. The inclusion of nanoscale in the heading narrows things down a bit to devices that fit into the size regime of 1–100 nm. I will go even further, by restricting the discussion to assemblies based on Förster type energy transfer and whose main functionalities are to transmit and modulate excitation energy. This way, the chapter creates a logic transition to the work presented in papers 1–3. Since one-step FRET between a single donor and a single acceptor is fairly limited when it comes to designing devices where photonic processes are the main functionalities, the designs featured in this chapter will almost exclusively rely on energy transfer between multiple fluorophores in multiple steps. Since many of the devices rely on excitation energy transfer through multiple fluorophores, it is logical to start the discussion with the light-harvesting complexes of photosynthetic bacteria. These advanced self-assembled systems rely on energy transfer in multiple steps to deliver excitation energy to the bacterial reaction center and has served as inspiration for the design of many of the devices discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hu XC, Schulten K (1997) How nature harvests sunlight. Phys Today 50:28–34

    Article  CAS  Google Scholar 

  2. Hu XC, Damjanovic A, Ritz T, Schulten K (1998) Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc Natl Acad Sci USA 95:5935–5941

    Article  CAS  Google Scholar 

  3. Koepke J, Hu XC, Muenke C, Schulten K, Michel H (1996) The crystal structure of the light-harvesting complex Ii (B800–850) from Rhodospirillum Molischianum. Structure 4:58–597

    Article  Google Scholar 

  4. Wagner RW, Lindsey JS (1994) A molecular photonic wire. J Am Chem Soc 116:9759–9760

    Article  CAS  Google Scholar 

  5. Ambroise A, Kirmaier C, Wagner RW, Loewe RS, Bocian DF, Holten D, Lindsey JS (2002) Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics. J Org Chem 67:3811–3826

    Article  CAS  Google Scholar 

  6. Wagner RW, Lindsey JS, Seth J, Palaniappan V, Bocian DF (1996) Molecular optoelectronic gates. J Am Chem Soc 118:3996–3997

    Article  CAS  Google Scholar 

  7. Lammi RK, Ambroise A, Balasubramanian T, Wagner RW, Bocian DF, Holten D, Lindsey JS (2000) Structural control of photoinduced energy transfer between adjacent and distant sites in multiporphyrin arrays. J Am Chem Soc 122:7579–7591

    Article  CAS  Google Scholar 

  8. Hernando J, Hoogenboom JP, van Dijk E, Garcia-Lopez JJ, Crego-Calama M, Reinhoudt DN, van Hulst NF, Garcia-Parajo MF (2004) Single molecule photo bleaching probes the exciton wave function in a multichromophoric system. Phys Rev Lett, 93

    Google Scholar 

  9. Tong AK, Jockusch S, Li ZM, Zhu HR, Akins DL, Turro NJ, Ju JY (2001) Triple fluorescence energy transfer in covalently trichromophore-labeled DNA. J Am Chem Soc 123:12923–12924

    Article  CAS  Google Scholar 

  10. Kawahara S-i, Uchimaru T, Murata S (1999) Sequential multistep energy transfer: enhancement of efficiency of long-range fluorescence resonance energy transfer. Chem Comm 563–564

    Google Scholar 

  11. Heilemann M, Tinnefeld P, Sanchez Mosteiro G, Garcia Parajo M, Van Hulst NF, Sauer M (2004) Multistep energy transfer in single molecular photonic wires. J Am Chem Soc 126:6514–6515

    Article  CAS  Google Scholar 

  12. Tinnefeld P, Heilemann M, Sauer M (2005) Design of molecular photonic wires based on multistep electronic excitation transfer. Chem Phys Chem 6:217–222

    Article  CAS  Google Scholar 

  13. Ohya Y, Yabuki K, Hashimoto M, Nakajima A, Ouchi T (2003) Multistep fluorescence resonance energy transfer in sequential chromophore array constructed on oligo-DNA assemblies. Bioconjugate Chem 14:1057–1066

    Article  CAS  Google Scholar 

  14. Heilemann M, Kasper R, Tinnefeld P, Sauer M (2006) Dissecting and reducing the heterogeneity of excited-state energy transport in DNA-based photonic wires. J Am Chem Soc 128:16864–16875

    Article  CAS  Google Scholar 

  15. Sanchez-Mosteiro G, van Dijk EM, Hernando J, Heilemann M, Tinnefeld P, Sauer M, Koberlin F, Patting M, Wahl M, Erdmann R, van Hulst NF, Garcia-Parajo MF (2006) DNA-based molecular wires: multiple emission pathways of individual constructs. J Phys Chem B 110:26349–26353

    Article  CAS  Google Scholar 

  16. Uemura A, Kimura S, Imanishi Y (1983) Investigation on the interactions of peptides in the assembly of liposome and peptide by fluorescence. Biochim Biophys Acta 729:28–34

    Article  CAS  Google Scholar 

  17. Vyawahare S, Eyal S, Mathews KD, Quake SR (2004) Nanometer-scale fluorescence resonance optical waveguides. Nano Lett 4:1035–1039

    Article  CAS  Google Scholar 

  18. Stein IH, Steinhauer C, Tinnefeld P (2011) Single-molecule four-color fret visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    Article  CAS  Google Scholar 

  19. Ruiz-Carretero A, Janssen PGA, Stevens AL, Surin M, Herz LM, Schenning A (2011) Directing energy transfer in discrete one-dimensional oligonucleotide-template assemblies. Chem Commun 47:884–886

    Article  CAS  Google Scholar 

  20. Benvin AL, Creeger Y, Fisher GW, Ballou B, Waggoner AS, Armitage BA (2007) Fluorescent DNA nano tags: supramolecular fluorescent labels based on intercalating dye arrays assembled on nanostructure DNA templates. J Am Chem Soc 129:2025–2034

    Article  CAS  Google Scholar 

  21. Özhalıcı-Ünal H, Armitage BA (2009) Fluorescent DNA nano tags based on a self-assembled DNA tetrahedron. ACS Nano 3:425–433

    Article  Google Scholar 

  22. Jullien L, Canceill J, Valeur B, Bardez E, Lefèvre J-P, Lehn JM, Marchi-Artzner V, Pansu R (1996) Multichromophoric cyclodextrins 4 light conversion by antenna effect. J Am Chem Soc 118:5432–5442

    Article  CAS  Google Scholar 

  23. Choi M-S, Aida T, Yamazaki T, Yamazaki I (2002) Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer. Chem–Eur J, 8, 2667–2678

    Google Scholar 

  24. Choi M-S, Yamazaki T, Yamazaki I, Aida T (2004) Bioinspired molecular design of light-harvesting multiporphyrin arrays. Angew Chem Int Ed 43:150–158

    Article  CAS  Google Scholar 

  25. Nakamura Y, Aratani N, Osuka A (2007) Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. Chem Soc Rev 36:831–845

    Article  CAS  Google Scholar 

  26. Aratani N, Kim D, Osuka A (2009) Discrete cyclic porphyrin arrays as artificial light-harvesting antenna. Acc Chem Res 42:1922–1934

    Article  CAS  Google Scholar 

  27. Yang J, Park M, Yoon ZS, Hori T, Peng XB, Aratani N, Dedecker P, Hotta JI, Uji-I H, Sliwa M, Hofkens J, Osuka A, Kim D (2008) Excitation energy migration processes in cyclic porphyrin arrays probed by single molecule spectroscopy. J Am Chem Soc 130:1879–1884

    Article  CAS  Google Scholar 

  28. Schenning APHJ, Benneker FBG, Geurts HPM, Liu XY, Nolte RJM (1996) Porphyrin wheels. J Am Chem Soc 118:8549–8552

    Article  CAS  Google Scholar 

  29. Hoffmann M, Karnbratt J, Chang MH, Herz LM, Albinsson B, Anderson HL (2008) Enhanced pi conjugation around a porphyrin [6] Nano ring. Angew Chem Int Ed 47:4993–4996

    Article  CAS  Google Scholar 

  30. Wurthner F, Sautter A (2003) Energy transfer in multichromophoric self-assembled molecular squares. Org Biomol Chem 1:240–243

    Article  CAS  Google Scholar 

  31. Sautter A, Kaletaş BK, Schmid DG, Dobrawa R, Zimine M, Jung G, van Stokkum IHM, De Cola L, Williams R, Würthner F (2005) Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. J Am Chem Soc 127:6719–6729

    Article  CAS  Google Scholar 

  32. Moore TA, Gust D, Mathis P, Mialocq JC, Chachaty C, Bensasson RV, Land EJ, Doizi D, Liddell PA, Lehman WR, Nemeth GA, Moore AL (1984) Photo driven charge separation in a carotenoporphyrin quinone triad. Nature 307:630–632

    Article  CAS  Google Scholar 

  33. Gust D, Moore TA, Moore AL (1993) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26:198–205

    Article  CAS  Google Scholar 

  34. SteinbergYfrach G, Liddell PA, Hung SC, Moore AL, Gust D, Moore TA (1997) Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385:239–241

    Article  CAS  Google Scholar 

  35. Kuciauskas D, Liddell PA, Lin S, Johnson TE, Weghorn SJ, Lindsey JS, Moore AL, Moore TA, Gust D (1999) An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 121:8604–8614

    Article  CAS  Google Scholar 

  36. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    Article  CAS  Google Scholar 

  37. Goodman RP, Berry RM, Turberfield AJ (2004) The single-step synthesis of a DNA tetrahedron. Chem Comm 1372–1373

    Google Scholar 

  38. Goodman RP, Schaap IAT, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 310:1661–1665

    Article  CAS  Google Scholar 

  39. Miller RA, Presley AD, Francis MB (2007) Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J Am Chem Soc 129:3104–3109

    Article  CAS  Google Scholar 

  40. Brousmiche DW, Serin JM, Frechet JMJ, He GS, Lin TC, Chung SJ, Prasad PN, Kannan R, Tan LS (2004) Fluorescence resonance energy transfer in novel multiphoton absorbing dendritic structures. J Phys Chem B 108:8592–8600

    Article  CAS  Google Scholar 

  41. Dutta PK, Varghese R, Nangreave J, Lin S, Yan H, Liu Y (2011) DNA-directed artificial light-harvesting antenna. J Am Chem Soc 133:11985–11993

    Article  CAS  Google Scholar 

  42. Wang R, Liu W, Seeman NC (2009) Prototyping nano rod control: a DNA double helix sheathed within a DNA six-helix bundle. Chem Biol 16:862–867

    Article  CAS  Google Scholar 

  43. Garo F, Häner R (2012) A DNA-based light-harvesting antenna. Angew Chem Int Ed 51:916–919

    Article  CAS  Google Scholar 

  44. Shank NI, Zanotti KJ, Lanni F, Berget PB, Armitage BA (2009) Enhanced photostability of genetically encodable fluoro modules based on fluoro genic cyanine dyes and a promiscuous protein partner. J Am Chem Soc 131:12960–12969

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hannestad .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hannestad, J. (2013). Nanoscale Photonic Devices. In: Fluorescence in Bio-inspired Nanotechnology. Springer Theses. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01068-7_5

Download citation

Publish with us

Policies and ethics