Skip to main content

Wave Propagation in Coupled 1D-Nanosystems

  • Chapter
  • First Online:
Wave Propagation in Nanostructures

Part of the book series: NanoScience and Technology ((NANO))

  • 1682 Accesses

Abstract

The wave propagation in 1-D nanorods was studied in detail in Chap. 6, while 1-D nanobeams (both Euler-Bernoulli and Timoshenko beam models) was discussed in Chap. 7. In Chap. 8, the wave propagation in connected 1-D beams was studied (MWCNT), where the connection is along the circumference of multiple nanotube walls through van der Walls forces . In this chapter, we will study the wave propagation in 1-D nanorods/nanobeams, which are explicitly connected elastically all along the length through a series of distributed springs. Such structures are prevalent in nano electro mechanical systems (NEMS) , nano opto-mechanical systems , nano oscillators etx. Again, we will use non local elasticity formulation and the main objective here is to study the effect of non local scale parameter and coupling stiffness on the wave behavior of such nano systems. It should be said here that the literature available on this important topic is not large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Murmu, S. Adhikari, Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43(1), 415422 (2010)

    Article  Google Scholar 

  2. X. Zhang, P. Sharma, Size dependency of strain in arbitrary shaped anisotropic embedded quantum dots due to nonlocal dispersive effects. Phys. Rev. B 72, 195345 (2005)

    Article  ADS  Google Scholar 

  3. S. Gopalakrishnan, A. Chakraborty, D. Roy Mahapatra, Spectral Finite Elem. Method (Springer-Verlag Landon Ltd., Verlag Landon, 2008)

    Google Scholar 

  4. J.P. Lu, Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79(7), 1297–1300 (1997)

    Article  ADS  Google Scholar 

  5. H.V. Vu, A.M. Ordonez, B.H. Karnopp, Vibration of a double-beam system. J. Sound Vib. 229, 807–822 (2000)

    Article  ADS  MATH  Google Scholar 

  6. H. Erol, M. Gurgoz, Longitudinal vibrations of a double-rod system coupled by springs and dampers. J. Sound Vib. 276, 419–430 (2004)

    Article  ADS  Google Scholar 

  7. Z. Oniszczuk, Free transverse vibrations of elastically connected simply supported double-beams complex system. J. Sound Vib. 232, 387–403 (2000)

    Article  ADS  Google Scholar 

  8. A. Oniszczuk, Transverse vibrations of elastically connected double-string complex systemdpart I: free vibrations. J. Sound Vib. 232, 355–366 (2000)

    Article  ADS  Google Scholar 

  9. Z. Oniszczuk, Transverse vibrations of elastically connected double-string complex systemdpart II: forced vibrations. J. Sound Vib. 232, 367–386 (2000)

    Article  ADS  Google Scholar 

  10. M.A. Hilal, Dynamic response of a double EulereBernoulli beam due to a moving constant load. J. Sound Vib. 297, 477–491 (2006)

    Article  ADS  Google Scholar 

  11. T.R. Hamada, H. Nakayama, K. Hayashi, Free and forced vibration of elastically connected double-beam systems. Bull. J. Soc. Mech. Eng. 26, 1936–1942 (1983)

    Google Scholar 

  12. M. Gurgoz, H. Erol, On laterally vibrating beams carrying tip masses, coupled by several double springemass systems. J. Sound Vib. 269, 431–438 (2004)

    Article  ADS  Google Scholar 

  13. Y.Q. Zhang, Y. Lu, G.W. Ma, Effect of compressive axial load on forced transverse vibrations of a double-beam system. Int. J. Mech. Sci. 50, 299–305 (2008)

    Article  MATH  Google Scholar 

  14. Y.Q. Zhang, Y. Lu, S.L. Wang, X. Liu, Vibration and buckling of a doublebeam system under compressive axial loading. J. Sound Vib. 318, 341–352 (2008)

    Article  ADS  Google Scholar 

  15. S.G. Kelly, S. Srinivas, Free vibrations of elastically connected stretched beams. J. Sound Vib. 326, 883–893 (2009)

    Article  ADS  Google Scholar 

  16. M.A.D. Rosa, M. Lippiello, Non-classical boundary conditions and DQM for double-beams. Mech. Res. Commun. 34, 538–544 (2007)

    Article  MATH  Google Scholar 

  17. J. Li, H. Hua, Spectral finite element analysis of elastically connected doublebeam systems. Finite Elem. Anal. Des. 43, 1155–1168 (2007)

    Article  MathSciNet  Google Scholar 

  18. I.W. Frank, P.B. Deotare, M.W. McCutcheon, M. Loncar, Programmable photonic crystal nanobeam cavities. Opt. Express 18, 8705–8712 (2010)

    Article  Google Scholar 

  19. M. Eichenfield, R. Camacho, J. Chan, K.J. Vahala, O. Painter, A picogramand nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009)

    Article  ADS  Google Scholar 

  20. P.B. Deotare, M.W. Mc Cutcheon, I.W. Frank, M. Khan, M. Loncar, Coupled photonic crystal nanobeam cavities. Appl. Phys. Lett. 95, 031102 (2009)

    Article  ADS  Google Scholar 

  21. Q. Lin, J. Rosenberg, D. Chang, R. Camacho, M. Eichenfield, K.J. Vahala, O. Painter, Coherent mixing of mechanical excitations in nano-optomechanical structures. Nat. Photonics 4, 236–242 (2010)

    Article  ADS  Google Scholar 

  22. J.A. Ruud, T.R. Jervis, F. Spaepan, Nanoindention of Ag/Ni multilayered thin films. J. Appl. Phys. 75, 4969–4974 (1994)

    Article  ADS  Google Scholar 

  23. T.G. Sorop, L.J. Jongh, Size-dependent anisotropic diamagnetic screening in super conducting Sn nanowires. Phys. Rev. B 75, 014510 (2007)

    Article  ADS  Google Scholar 

  24. J.A. Juhasz, S.M. Best, R. Brooks, M. Kawashita, N. Miyata, T. Kokubo, T. Nakamura, W. Bonfield, Mechanical properties of glass-ceramic AeW-polyethylene composites: effect of filler content and particle size. Biomaterials 25, 949–955 (2004)

    Article  Google Scholar 

  25. A. Kasuya, Y. Sasaki, Y. Saito, K. Tohji, Y. Nishina, Evidence for sizedependent discrete dispersions in single-wall nanotubes. Phys. Rev. Lett. 78, 4434–4437 (1997)

    Article  ADS  Google Scholar 

  26. R. Chowdhury, S. Adhikari, C.W. Wang, F. Scarpa, A molecular mechanics approach for the vibration of single walled carbon nanotubes. Comput. Mater. Sci. 48, 730–735 (2010)

    Article  Google Scholar 

  27. T. Murmu, S. Adhikari, Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43, 415–422 (2010)

    Article  ADS  Google Scholar 

  28. T. Murmu, S. Adhikari, Nonlocal transverse vibration of double-nanobeamsystems. J. Appl. Phys. 108, 083514 (2010)

    Article  ADS  Google Scholar 

  29. S. Narendar, S. Gopalakrishnan, Axial wave propagation in coupled nanorod system with nonlocal small scale effects, Compos.: Part B Eng. 42, 2013–2023 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivasan Gopalakrishnan .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gopalakrishnan, S., Narendar, S. (2013). Wave Propagation in Coupled 1D-Nanosystems. In: Wave Propagation in Nanostructures. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-01032-8_9

Download citation

Publish with us

Policies and ethics