Skip to main content

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

Abstract

Collision detection is a fundamental technique in each situation where we interact with virtual objects, including computer graphics, robotics and haptics. In many of these applications, the collision detection process is the computational bottleneck. In this chapter, we explain what makes the detection of collisions so complicated and we draft the current open challenges in this field. Moreover, we define the scope of this book and we outline our contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the way, Chazelle’s polyhedron also has other interesting properties: for instance, it requires O(n 2) additional Steiner points for its tetrahedrization.

References

  1. Barzel, R., Hughes, J. F., & Wood, D. N. (1996). Plausible motion simulation for computer graphics animation. In Proceedings of the eurographics workshop on computer animation and simulation ’96 (pp. 183–197). New York: Springer. ISBN3-211-82885-0. URL http://dl.acm.org/citation.cfm?id=274976.274989.

    Chapter  Google Scholar 

  2. Bishop, L., Eberly, D., Whitted, T., Finch, M., & Shantz, M. (1998). Designing a pc game engine. IEEE Computer Graphics and Applications, 18(1), 46–53.

    Article  Google Scholar 

  3. Bouma, W. J., & Vanecek, G. Jr. (1991). Collision detection and analysis in a physically based simulation. In Eurographics workshop on animation and simulation (pp. 191–203).

    Google Scholar 

  4. Chakravarthy, A., & Ghose, D. (1998). Obstacle avoidance in a dynamic environment: a collision cone approach. IEEE Transactions on Systems, Man and Cybernetics, Part A, 28(5), 562–574.

    Article  Google Scholar 

  5. Cordier, F., & Magnenat Thalmann, N. (2002). Real-time animation of dressed virtual humans. Computer Graphics Forum, 21(3), 327–335.

    Article  Google Scholar 

  6. Eckstein, J., & Schömer, E. (1999). Dynamic collision detection in virtual reality applications. In V. Skala (Ed.), WSCG’99 conference proceedings. URL citeseer.ist.psu.edu/eckstein99dynamic.html.

    Google Scholar 

  7. Fisher, S., & Lin, M. (2001). Fast penetration depth estimation for elastic bodies using deformed distance fields. In Proc. international conf. on intelligent robots and systems (IROS) (pp. 330–336).

    Google Scholar 

  8. Gilden, D. L., & Proffitt, D. R. (1989). Understanding collision dynamics. Journal of Experimental Psychology. Human Perception and Performance, 15, 372–383.

    Article  Google Scholar 

  9. Ilushin, O., Elber, G., Halperin, D., Wein, R., & Kim, M.-S. (2005). Precise global collision detection in multi-axis nc-machining. Computer Aided Design, 37(9), 909–920. doi:10.1016/j.cad.2004.09.018.

    Article  Google Scholar 

  10. Kim, H. S., Ko, H., Lee, K., & Lee, C.-W. (1995). A collision detection method for real time assembly simulation. In IEEE international symposium on assembly and task planning (Vol. 0:0387). doi:10.1109/ISATP.1995.518799.

    Google Scholar 

  11. Kuffner, J., Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Self-collision detection and prevention for humanoid robots. In Proceedings of the IEEE international conference on robotics and automation (pp. 2265–2270).

    Google Scholar 

  12. Lafleur, B., Magnenat Thalmann, N., & Thalmann, D. (1991). Cloth animation with self-collision detection. In Proc. of the conf. on modeling in comp. graphics (pp. 179–187). Berlin: Springer.

    Chapter  Google Scholar 

  13. LaValle, S. M. (2004). Planning algorithms.

    Google Scholar 

  14. Mark, W. R., Randolph, S. C., Finch, M., Van Verth, J. M., & Taylor, R. M. II (1996). Adding force feedback to graphics systems: issues and solutions. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH ’96 (pp. 447–452). New York: ACM. ISBN 0-89791-746-4. doi:10.1145/237170.237284. URL http://doi.acm.org/10.1145/237170.237284.

    Chapter  Google Scholar 

  15. O’Sullivan, C., & Dingliana, J. (2001). Collisions and perception. ACM Transactions on Graphics, 20(3), 151–168. doi:10.1145/501786.501788. URL http://doi.acm.org/10.1145/501786.501788.

    Article  Google Scholar 

  16. O’Sullivan, C., Dingliana, J., Giang, T., & Kaiser, M. K. (2003). Evaluating the visual fidelity of physically based animations. ACM Transactions on Graphics, 22(3), 527–536. doi:10.1145/882262.882303. URL http://doi.acm.org/10.1145/882262.882303.

    Article  Google Scholar 

  17. Reitsma, P. S. A., & O’Sullivan, C. (2008). Effect of scenario on perceptual sensitivity to errors in animation. In Proceedings of the 5th symposium on applied perception in graphics and visualization, APGV ’08 (pp. 115–121). New York: ACM. ISBN 978-1-59593-981-4. doi:10.1145/1394281.1394302. URL http://doi.acm.org/10.1145/1394281.1394302.

    Chapter  Google Scholar 

  18. Turk, G. (1989). Interactive collision detection for molecular graphics (Technical report). University of North Carolina at Chapel Hill. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.93.4927.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weller, R. (2013). Introduction. In: New Geometric Data Structures for Collision Detection and Haptics. Springer Series on Touch and Haptic Systems. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01020-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01020-5_1

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01019-9

  • Online ISBN: 978-3-319-01020-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics