Skip to main content

Excitation Energies and Transition Moments from the PCM Linear Response Functions

  • Chapter
  • First Online:
Book cover Molecular Response Functions for the Polarizable Continuum Model

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

  • 478 Accesses

Abstract

This chapter considers the properties of the molecular solute in electronic excited states determined from the linear response functions described in the previous Chap. 3. Transition energies and transition moments are determined from a generalized eigenvalue equations, and the first-order properties in electronic excited states are expressed as analytical gradients of the corresponding transition energies with respect to suitable perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we consider the linear response function for the electronic ground state of the molecular solute.

  2. 2.

    The amplitudes of de-excitation operator \({\fancyscript{M}}=\sum _K\mu _K\tau ^{\dagger } _K\) are determined by the perturbation independent equation

    $$\begin{aligned}&<HF|(1+\varLambda )[[e^{-T}H_N e^{T},\tau _K], R_f]|HF >\\&+ < HF|(1+\varLambda )|e^{-T}[Q_N^{|\omega |},\tau _K]e^T|HF > \cdot < HF|(1+\varLambda )|e^{-T}[V_N, R_f]e^T|HF >\\&+<HF|M[e^{-T}H_N e^{T},\tau _K]|HF> \\&+ <HF|M e^{-T}Q_N^{|\omega |}e^T|HF>\cdot <HF|(1+\varLambda )|e^{-T}[V_N,\tau _K]e^T|HF>+\omega \, \mu _K = 0 \end{aligned}$$
  3. 3.

    The coefficients of the \({\fancyscript{Z}}_f\) and \({\fancyscript{T}}_f\) operators are determined from the following set of equations:

    $$\begin{aligned} 0 =&< HF|L_f\left[ [e^{-T}H_N e^T,\tau _p], R_f\right] |HF>\\&+< HF|(1+\varLambda ) [e^{-T}\mathbf{Q}_Ne^T,\tau _p]|HF >\cdot < HF|L_f[e^{-T}\mathbf{V}_N e^T, R_f ]|HF >\\&+ < HF|L_f [e^{-T}\mathbf{Q}_N^{|\omega |} e^T,\tau _p]|HF >\cdot < HF|(1+\varLambda )e^{-T}[[\mathbf{V}_N,\tau _p], R_f]e^T|HF >\\&+ < HF|{\fancyscript{Z}}_f [e^{-T}{H}_{N}e^T,\tau _p]|HF >\\&+ < HF|(1+\varLambda )e^{-T}[[{H}_{N},\tau _p],{\fancyscript{T}}_f]e^T|HF > \end{aligned}$$

    and

    $$\begin{aligned} 0 =&< HF|L_f\left[ e^{-T} < HF|\tau _q^{\dagger } e^{-T}\mathbf{Q}_N e^T|HF >\cdot \mathbf{V}_N e^T, R_f\right] |HF >\\&+ < HF|L_f e^{-T}\mathbf{Q}_N^{|\omega |} e^T|HF >\cdot < HF|\tau _q^{\dagger } e^{-T}[\mathbf{V}_N, R_f]e^T|HF >\\&+ < HF|{\fancyscript{Z}}_f e^{-T} > HF|\tau _q^{\dagger } e^{-T}\mathbf{Q}_N e^T|HF >\cdot \mathbf{V }_Ne^T|HF >\\&+ < HF|\tau _q^{\dagger } e^{-T}[{H}_{N},{\fancyscript{T}}_f]e^T|HF >\\&+ < HF|(1+\varLambda )e^{-T}[>HF|\tau _q^{\dagger } e^{-T}\mathbf{Q}_N e^T|HF > \cdot \mathbf{V }_N,{\fancyscript{T}}_f]e^T|HF > \end{aligned}$$
  4. 4.

    Note that, as the PCM-CC Eqs. (1.24, 1.28), and the PCM-LR-CC Eqs. (4.8) and (4.9) are assumed to be satisfied, the Lagrangian (4.18) is equal to the excitation energy, \(F=\omega _f\).

  5. 5.

    The one particle density matrix elements \(\gamma ^f_{rs},\gamma ^{0f}_{rs}\) and \(\gamma ^{f0}_{rs}\) are defined as:

    $$\begin{aligned} \gamma ^f_{rs} =&< HF|L_f\left[ e^{-T}\{\tau _p^{\dagger } \tau _q\}e^{T}, R_f\right] |HF >\\&+ < HF|(1+\varLambda )e^{-T}[\{\tau _p^{\dagger } \tau _q\},{\fancyscript{T}}_f]e^T|HF >\\&+ < HF|{\fancyscript{Z}}_f e^{-T}\{\tau _p^{\dagger } \tau _q\}e^{T}|HF >\\ \gamma ^{0f}_{rs}=&< HF|(1+)e^{-T}[\{\tau _p^{\dagger } \tau _q\}, R_f]e^T|HF >\\&\gamma ^{f0}_{rs}= < HF|L_f e^{-T}\{\tau _p^{\dagger } \tau _q\}e^{T}|HF > \end{aligned}$$

    where \(\{\tau _p^{\dagger } \tau _q\}e^{T}|HF\) denote a normal ordered sequences of the creation/annihilation operators.

References

  1. J. Kongsted, A. Osted, K.V. Mikkelsen, O. Christiansen, Mol. Phys. 100, 1813 (2002)

    Google Scholar 

  2. R. Cammi, S. Corni, B. Mennucci, J. Tomasi, J. Chem. Phys. 122, 101513 (2005)

    Google Scholar 

  3. S. Corni, R. Cammi, B. Mennucci, J. Tomasi, J. Chem. Phys. 123, 134512 (2005)

    Google Scholar 

  4. H. Sekino, R.J. Bartlett, Int. J. Quantum Chem. (Symposium) 18, 255 (1984)

    Google Scholar 

  5. H. Nakatsuji, Chem. Phys. Lett. 59, 362 (1978)

    Google Scholar 

  6. R. Cammi, Int. J. Quantum Chem. 110, 3040 (2010)

    Google Scholar 

  7. M. Caricato, J. Chem. Theo. Comp. 8, 4494 (2012)

    Google Scholar 

  8. M. Caricato, J. Chem. Theo. Comp. 8, 5081 (2012)

    Google Scholar 

  9. R. Cammi, R. Fukuda, M. Ehara, H. Nakatsuji, J. Chem. Phys. 133, 024104 (2010)

    Google Scholar 

  10. R. Fukuda, M. Ehara, H. Nakatsuji, R. Cammi, J. Chem. Phys. 134, 104109 (2011)

    Google Scholar 

  11. O. Christiansen, P. Jörgensen, C. Hättig, Int. J. Quantum Chem. 68, 1 (1998)

    Google Scholar 

  12. O. Christiansen, K.V. Mikkelsen, J. Chem. Phys. 110, 8348 (1999)

    Google Scholar 

  13. P.Z. Szalay, Int. J. Quantum Chem. 55, 151 (1995)

    Google Scholar 

  14. S.R. Gwaltney, R.J. Bartlett, J. Chem. Phys. 110, 62 (1999)

    Google Scholar 

  15. J. Gauss, in Encyclopedia of Computational Chemistry, vol. I, ed. by P.V.R. Schleyer (Wiley, New York, 1999), p. 617

    Google Scholar 

  16. J.F. Stanton, R.J. Bartlett, J. Chem. Phys. 98, 7029 (1993)

    Google Scholar 

  17. R. Cammi, B. Mennucci, J. Tomasi, J. Phys. Chem. A 103, 9100 (1999)

    Google Scholar 

  18. C. Cappelli, S. Corni, B. Mennucci, R. Cammi, J. Tomasi, J. Chem. Phys. 113, 11270 (2000)

    Google Scholar 

  19. H. Koch, P. Jörgensen, J. Chem. Phys. 93, 3333 (1990)

    Google Scholar 

  20. R. Cammi, B. Mennucci, in Challenges and Advances in Computational Chemistry and Physics, vol. V, ed. by M.K. Shukla, J. Leszczynski (Springer, New York, 2008), p. 179

    Google Scholar 

  21. B. Mennucci, C. Cappelli, C.A. Guido, R. Cammi, J. Tomasi, J. Phys. Chem. A 113, 3009 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Cammi .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Cammi, R. (2013). Excitation Energies and Transition Moments from the PCM Linear Response Functions. In: Molecular Response Functions for the Polarizable Continuum Model. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-00987-2_4

Download citation

Publish with us

Policies and ethics