Skip to main content

Bacterial Lipopolysaccharide as Adjuvants

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Lipopolysaccharide (LPS, endotoxin) is a major component of the outer membrane of gram negative bacteria. It is an activator of humoral and cellular responses in humans with potential use as adjuvant in vaccine technology. Importantly, LPS has a large capacity to induce Th1-type responses and stimulate cytotoxic T lymphocytes, which are poorly obtained by standard adjuvants but required for specific immune stimulatory therapies. In contrast, LPS possess an extreme toxicity that limit its clinical use in humans. Alteration of its chemical structure led the generation of LPS-based derivatives with reduced toxicity but retaining adjuvant properties. Monophosphoryl lipid A (MPLA) has been the most successful LPS-based adjuvant, currently incorporated in approved vaccine preparations and extensively used in vaccine trials and preclinical studies. Novel designed structures, analogous to LPS and generated by chemical synthesis, can offer lower production cost and lesser heterogenic formulations than MPLA and, in addition, be even most suitable for specific immune therapies. Thus, LPS-based structures are valuable contributions as adjuvants in human vaccinology and open new possibilities to existing demands for specific therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rietschel, E.T., et al.: Bacterial endotoxins: chemical structure, biological activity and role in septicaemia. Scand. J. Infect. Dis. Suppl. 31, 8–21 (1982)

    PubMed  CAS  Google Scholar 

  2. Guo, L., et al.: Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189–198 (1998)

    Article  PubMed  CAS  Google Scholar 

  3. Gibbons, H.S., Lin, S., Cotter, R.J., Raetz, C.R.: Oxygen requirement for the biosynthesis of the S-2-hydroxymyristate moiety in Salmonella typhimurium lipid A. Function of LpxO, A new Fe2+/alpha-ketoglutarate-dependent dioxygenase homologue. J. Biol. Chem. 275, 32940–32949 (2000)

    Article  PubMed  CAS  Google Scholar 

  4. Reynolds, C.M., et al.: An outer membrane enzyme encoded by Salmonella typhimurium lpxR that removes the 3’-acyloxyacyl moiety of lipid A. J. Biol. Chem. 281, 21974–21987 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Trent, M.S., Pabich, W., Raetz, C.R., Miller, S.I.: A PhoP/PhoQ-induced Lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J. Biol. Chem. 276, 9083–9092 (2001)

    Article  PubMed  CAS  Google Scholar 

  6. Kawai, T., Akira, S.: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011)

    Article  PubMed  CAS  Google Scholar 

  7. Palsson-McDermott, E.M., O’Neill, L.A.: Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153–162 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Trinchieri, G., Sher, A.: Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. Kawai, T., Akira, S.: TLR signaling. Cell Death Differ. 13, 816–825 (2006)

    Article  PubMed  CAS  Google Scholar 

  10. Miggin, S.M., O’Neill, L.A.: New insights into the regulation of TLR signaling. J. Leukoc. Biol. 80, 220–226 (2006)

    Article  PubMed  CAS  Google Scholar 

  11. Alexander, C., Rietschel, E.T.: Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7, 167–202 (2001)

    PubMed  CAS  Google Scholar 

  12. Morrison, D.C., Kline, L.F.: Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J. Immunol. 118, 362–368 (1977)

    PubMed  CAS  Google Scholar 

  13. Cooper, N.R., Morrison, D.C.: Binding and activation of the first component of human complement by the lipid A region of lipopolysaccharides. J. Immunol. 120, 1862–1868 (1978)

    PubMed  CAS  Google Scholar 

  14. Conti, P., et al.: Activation of human natural killer cells by lipopolysaccharide and generation of interleukin-1 alpha, beta, tumour necrosis factor and interleukin-6. Effect of IL-1 receptor antagonist. Immunology 73, 450–456 (1991)

    PubMed  CAS  Google Scholar 

  15. Kobayashi, M., et al.: Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170, 827–845 (1989)

    Article  PubMed  CAS  Google Scholar 

  16. Cinel, I., Dellinger, R.P.: Advances in pathogenesis and management of sepsis. Curr. Opin. Infect. Dis. 20, 345–352 (2007)

    Article  PubMed  Google Scholar 

  17. Annane, D., Bellissant, E., Cavaillon, J.M.: Septic shock. Lancet 365(63–78) (2005)

    Google Scholar 

  18. Vincent, J.L., et al.: Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 34, 344–353 (2006)

    Article  PubMed  Google Scholar 

  19. Martin, G.S., Mannino, D.M., Eaton, S., Moss, M.: The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 348, 1546–1554 (2003)

    Article  PubMed  Google Scholar 

  20. Kotani, S., Takada, H.: Structural requirements of lipid A for endotoxicity and other biological activities – an overview. Adv. Exp. Med. Biol. 256, 13–43 (1990)

    Article  PubMed  CAS  Google Scholar 

  21. Nowotny, A.: Molecular aspects of endotoxic reactions. Bacteriol. Rev. 33, 72–98 (1969)

    PubMed  CAS  Google Scholar 

  22. Miller, S.I., Ernst, R.K., Bader, M.W.: LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3, 36–46 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Golenbock, D.T., Hampton, R.Y., Qureshi, N., Takayama, K., Raetz, C.R.: Lipid A-like molecules that antagonize the effects of endotoxins on human monocytes. J. Biol. Chem. 266, 19490–19498 (1991)

    PubMed  CAS  Google Scholar 

  24. Kotani, S., et al.: Synthetic lipid A with endotoxic and related biological activities comparable to those of a natural lipid A from an Escherichia coli re-mutant. Infect. Immun. 49, 225–237 (1985)

    PubMed  CAS  Google Scholar 

  25. Saitoh, S., et al.: Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerization. Int. Immunol. 16, 961–969 (2004)

    Article  PubMed  CAS  Google Scholar 

  26. David, S., Vermeer-de Bondt, P.E., van der Maas, N.A.: Reactogenicity of infant whole cell pertussis combination vaccine compared with acellular pertussis vaccines with or without simultaneous pneumococcal vaccine in the Netherlands. Vaccine 26, 5883–5887 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. Gustafsson, L., Hallander, H.O., Olin, P., Reizenstein, E., Storsaeter, J.: A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N. Engl. J. Med. 334, 349–355 (1996)

    Article  PubMed  CAS  Google Scholar 

  28. Brewer, J.M., et al.: Aluminium hydroxide adjuvant initiates strong antigen-specific Th2 responses in the absence of IL-4- or IL-13-mediated signaling. J. Immunol. 163, 6448–6454 (1999)

    PubMed  CAS  Google Scholar 

  29. Dubensky Jr., T.W., Reed, S.G.: Adjuvants for cancer vaccines. Semin. Immunol. 22, 155–161 (2010)

    Article  PubMed  CAS  Google Scholar 

  30. Soghoian, D.Z., Streeck, H.: Cytolytic CD4(+) T cells in viral immunity. Expert Rev. Vaccines 9, 1453–1463 (2010)

    Article  PubMed  CAS  Google Scholar 

  31. Ziegler, A., et al.: EpCAM, a human tumor-associated antigen promotes Th2 development and tumor immune evasion. Blood 113, 3494–3502 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. Akkoc, T., Akdis, M., Akdis, C.A.: Update in the mechanisms of allergen-specific immunotheraphy. Allergy Asthma Immunol. Res. 3, 11–20 (2011)

    Article  PubMed  CAS  Google Scholar 

  33. Chen, K., Cerutti, A.: Vaccination strategies to promote mucosal antibody responses. Immunity 33, 479–491 (2010)

    Article  PubMed  CAS  Google Scholar 

  34. Lawson, L.B., Norton, E.B., Clements, J.D.: Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. 23, 414–420 (2011)

    Article  PubMed  CAS  Google Scholar 

  35. O’Hagan, D.T.: MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection. Expert Rev. Vaccines 6, 699–710 (2007)

    Article  PubMed  Google Scholar 

  36. Arenas, J.: The role of bacterial lipopolysaccharides as immune modulator in vaccine and drug development. Endocr. Metab. Immune Disord. Drug Targets 12(3), 221–235 (2012)

    Article  PubMed  CAS  Google Scholar 

  37. Baldridge, J.R., Crane, R.T.: Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19, 103–107 (1999)

    Article  PubMed  CAS  Google Scholar 

  38. Evans, J.T., et al.: Enhancement of antigen-specific immunity via the TLR4 ligands MPL adjuvant and Ribi.529. Expert Rev. Vaccines 2, 219–229 (2003)

    Article  PubMed  CAS  Google Scholar 

  39. Ulrich, J.T., Myers, K.R.: Monophosphoryl lipid A as an adjuvant. Past experiences and new directions. Pharm. Biotechnol. 6, 495–524 (1995)

    Article  PubMed  CAS  Google Scholar 

  40. Vajdy, M., Singh, M.: The role of adjuvants in the development of mucosal vaccines. Expert Opin. Biol. Ther. 5, 953–965 (2005)

    Article  PubMed  CAS  Google Scholar 

  41. Drachenberg, K.J., Wheeler, A.W., Stuebner, P., Horak, F.: A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy 56, 498–505 (2001)

    Article  PubMed  CAS  Google Scholar 

  42. Drachenberg, K.J., Heinzkill, M., Urban, E., Woroniecki, S.R.: Efficacy and tolerability of short-term specific immunotherapy with pollen allergoids adjuvanted by monophosphoryl lipid A (MPL) for children and adolescents. Allergol. Immunopathol. (Madr.) 31, 270–277 (2003)

    Article  CAS  Google Scholar 

  43. Kundi, M.: New hepatitis B vaccine formulated with an improved adjuvant system. Expert Rev. Vaccines 6, 133–140 (2007)

    Article  PubMed  CAS  Google Scholar 

  44. Aide, P., et al.: Four year immunogenicity of the RTS, S/AS02(A) malaria vaccine in Mozambican children during a phase IIb trial. Vaccine 29, 6059–6067 (2011)

    Article  PubMed  Google Scholar 

  45. Von, E.K., et al.: The candidate tuberculosis vaccine Mtb72F/AS02A: Tolerability and immunogenicity in humans. Hum. Vaccin. 5, 475–482 (2009)

    Google Scholar 

  46. Polhemus, M.E., et al.: Evaluation of RTS, S/AS02A and RTS, S/AS01B in adults in a high malaria transmission area. PLoS One 4, e6465 (2009)

    Article  PubMed  Google Scholar 

  47. Brichard, V.G., Lejeune, D.: Cancer immunotherapy targeting tumour-specific antigens: towards a new therapy for minimal residual disease. Expert Opin. Biol. Ther. 8, 951–968 (2008)

    Article  PubMed  CAS  Google Scholar 

  48. Garcon, N., Chomez, P., Van, M.M.: GlaxoSmithKline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev. Vaccines 6, 723–739 (2007)

    Article  PubMed  CAS  Google Scholar 

  49. Fries, L.F., et al.: Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc. Natl. Acad. Sci. U. S. A. 89, 358–362 (1992)

    Article  PubMed  CAS  Google Scholar 

  50. Arenas, J., et al.: Coincorporation of LpxL1 and PagL mutant lipopolysaccharides into liposomes with Neisseria meningitidis opacity protein: influence on endotoxic and adjuvant activity. Clin. Vaccine Immunol. 17, 487–495 (2010)

    Article  PubMed  CAS  Google Scholar 

  51. Vernacchio, L., et al.: Effect of monophosphoryl lipid A (MPL) on T-helper cells when administered as an adjuvant with pneumocococcal-CRM197 conjugate vaccine in healthy toddlers. Vaccine 20, 3658–3667 (2002)

    Article  PubMed  CAS  Google Scholar 

  52. Olson, K., et al.: Liposomal gD ectodomain (gD1-306) vaccine protects against HSV2 genital or rectal infection of female and male mice. Vaccine 28, 548–560 (2009)

    Article  PubMed  CAS  Google Scholar 

  53. Hall, M.A., et al.: Intranasal immunization with multivalent group A streptococcal vaccines protects mice against intranasal challenge infections. Infect. Immun. 72, 2507–2512 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. Tana, W.S., Isogai, E., Oguma, K.: Induction of intestinal IgA and IgG antibodies preventing adhesion of verotoxin-producing Escherichia coli to Caco-2 cells by oral immunization with liposomes. Lett. Appl. Microbiol. 36, 135–139 (2003)

    Article  PubMed  CAS  Google Scholar 

  55. Baldridge, J.R., Yorgensen, Y., Ward, J.R., Ulrich, J.T.: Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 18, 2416–2425 (2000)

    Article  PubMed  CAS  Google Scholar 

  56. Kidon, M.I., Shechter, E., Toubi, E.: Vaccination against human papilloma virus and cervical cancer. Harefuah 150, 33–36 (2011). 68

    PubMed  Google Scholar 

  57. Labadie, J.: Postlicensure safety evaluation of human papilloma virus vaccines. Int. J. Risk Saf. Med. 23, 103–112 (2011)

    PubMed  Google Scholar 

  58. Morello, C.S., Levinson, M.S., Kraynyak, K.A., Spector, D.H.: Immunization with herpes simplex virus 2 (HSV-2) genes plus inactivated HSV-2 is highly protective against acute and recurrent HSV-2 disease. J. Virol. 85, 3461–3472 (2011)

    Article  PubMed  CAS  Google Scholar 

  59. Llanos-Cuentas, A., et al.: A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine 28, 7427–7435 (2010)

    Article  PubMed  CAS  Google Scholar 

  60. Zhu, D., Barniak, V., Zhang, Y., Green, B., Zlotnick, G.: Intranasal immunization of mice with recombinant lipidated P2086 protein reduces nasal colonization of group B Neisseria meningitidis. Vaccine 24, 5420–5425 (2006)

    Article  PubMed  CAS  Google Scholar 

  61. Green, B.A., et al.: PppA, a surface-exposed protein of Streptococcus pneumoniae, elicits cross-reactive antibodies that reduce colonization in a murine intranasal immunization and challenge model. Infect. Immun. 73, 981–989 (2005)

    Article  PubMed  CAS  Google Scholar 

  62. Egan, M.A., et al.: A comparative evaluation of nasal and parenteral vaccine adjuvants to elicit systemic and mucosal HIV-1 peptide-specific humoral immune responses in cynomolgus macaques. Vaccine 22, 3774–3788 (2004)

    Article  PubMed  CAS  Google Scholar 

  63. Mason, K.W., et al.: Reduction of nasal colonization of nontypeable Haemophilus influenzae following intranasal immunization with rLP4/rLP6/UspA2 proteins combined with aqueous formulation of RC529. Vaccine 22, 3449–3456 (2004)

    Article  PubMed  CAS  Google Scholar 

  64. Baldridge, J.R., et al.: Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. J. Endotoxin Res. 8, 453–458 (2002)

    PubMed  CAS  Google Scholar 

  65. Ishizaka, S.T., Hawkins, L.D.: E6020: a synthetic Toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev. Vaccines 6, 773–784 (2007)

    Article  PubMed  CAS  Google Scholar 

  66. Morefield, G.L., Hawkins, L.D., Ishizaka, S.T., Kissner, T.L., Ulrich, R.G.: Synthetic Toll-like receptor 4 agonist enhances vaccine efficacy in an experimental model of toxic shock syndrome. Clin. Vaccine Immunol. 14, 1499–1504 (2007)

    Article  PubMed  CAS  Google Scholar 

  67. Przetak, M., et al.: Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine 21, 961–970 (2003)

    Article  PubMed  CAS  Google Scholar 

  68. Baudner, B.C., et al.: MF59 emulsion is an effective delivery system for a synthetic TLR4 agonist (E6020). Pharm. Res. 26, 1477–1485 (2009)

    Article  PubMed  CAS  Google Scholar 

  69. Wang, S., et al.: Effective antibody therapy induces host-protective antitumor immunity that is augmented by TLR4 agonist treatment. Cancer Immunol. Immunother. 61, 49–61 (2012)

    Article  PubMed  CAS  Google Scholar 

  70. Baldwin, S.L., et al.: Intradermal immunization improves protective efficacy of a novel TB vaccine candidate. Vaccine 27, 3063–3071 (2009)

    Article  PubMed  CAS  Google Scholar 

  71. Bertholet, S., et al.: Optimized subunit vaccine protects against experimental leishmaniasis. Vaccine 27, 7036–7045 (2009)

    Article  PubMed  CAS  Google Scholar 

  72. Coler, R.N., et al.: A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PLoS One 5, e13677 (2010)

    Article  PubMed  Google Scholar 

  73. Xiao, L., et al.: A TLR4 agonist synergizes with dendritic cell-directed lentiviral vectors for inducing antigen-specific immune responses. Vaccine 30, 2570–2581 (2012)

    Article  PubMed  CAS  Google Scholar 

  74. Pantel, A., et al.: A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T-cell immunity in vivo. Eur. J. Immunol. 42, 101–109 (2012)

    Article  PubMed  CAS  Google Scholar 

  75. Cong, H., et al.: Toxoplasma gondii HLA-B*0702-restricted GRA7(20-28) peptide with adjuvants and a universal helper T cell epitope elicits CD8(+) T cells producing interferon-gamma and reduces parasite burden in HLA-B*0702 mice. Hum. Immunol. 73, 1–10 (2012)

    Article  PubMed  CAS  Google Scholar 

  76. Baldwin, S.L., et al.: The importance of adjuvant formulation in the development of a tuberculosis vaccine. J. Immunol. 188, 2189–2197 (2012)

    Article  PubMed  CAS  Google Scholar 

  77. Windish, H.P., et al.: Protection of mice from Mycobacterium tuberculosis by ID87/GLA-SE, a novel tuberculosis subunit vaccine candidate. Vaccine 29, 7842–7848 (2011)

    Article  PubMed  CAS  Google Scholar 

  78. Ueda, H., Yamazaki, M.: Induction of tumor necrosis factor in a murine tumor by systemic administration of a novel synthetic lipid A analogue, ONO-4007. J. Immunother. 20, 65–69 (1997)

    Article  PubMed  CAS  Google Scholar 

  79. Matsumoto, N., Aze, Y., Akimoto, A., Fujita, T.: Restoration of immune responses in tumor-bearing mice by ONO-4007, an antitumor lipid A derivative. Immunopharmacology 36, 69–78 (1997)

    Article  PubMed  CAS  Google Scholar 

  80. Kuramitsu, Y., et al.: A new synthetic lipid A analog, ONO-4007, stimulates the production of tumor necrosis factor-alpha in tumor tissues, resulting in the rejection of transplanted rat hepatoma cells. Anticancer Drugs 8, 500–508 (1997)

    Article  PubMed  CAS  Google Scholar 

  81. Matsumoto, N., Oida, H., Aze, Y., Akimoto, A., Fujita, T.: Intratumoral tumor necrosis factor induction and tumor growth suppression by ONO-4007, a low-toxicity lipid A analog. Anticancer Res. 18, 4283–4289 (1998)

    PubMed  CAS  Google Scholar 

  82. Inagawa, H., et al.: Mechanisms by which chemotherapeutic agents augment the antitumor effects of tumor necrosis factor: involvement of the pattern shift of cytokines from Th2 to Th1 in tumor lesions. Anticancer Res. 18, 3957–3964 (1998)

    PubMed  CAS  Google Scholar 

  83. Matsumoto, N., Aze, Y., Akimoto, A., Fujita, T.: ONO-4007, an antitumor lipid A analog, induces tumor necrosis factor-alpha production by human monocytes only under primed state: different effects of ONO-4007 and lipopolysaccharide on cytokine production. J. Pharmacol. Exp. Ther. 284, 189–195 (1998)

    PubMed  CAS  Google Scholar 

  84. Khan, M.A., et al.: Inhibition of intracellular proliferation of Leishmania parasites in vitro and suppression of skin lesion development in BALB/c mice by a novel lipid A analog (ONO-4007). Am. J. Trop. Med. Hyg. 67, 184–190 (2002)

    PubMed  CAS  Google Scholar 

  85. Iio, J., et al.: Lipid A analogue, ONO-4007, inhibits IgE response and antigen-induced eosinophilic recruitment into airways in BALB/c mice. Int. Arch. Allergy Immunol. 127, 217–225 (2002)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Arenas PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arenas, J. (2014). Bacterial Lipopolysaccharide as Adjuvants. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_7

Download citation

Publish with us

Policies and ethics