Skip to main content

Antigen Delivery Systems as Oral Adjuvants

  • Chapter
  • First Online:
Book cover Molecular Vaccines

Abstract

Animals, including humans, have evolved a sophisticated mucosal immune system. By understanding mucosal immune activation, we can rationally design adjuvants to elicit a long-lasting protective immune response. In this chapter we will discuss about what is known about mucosal immunity and oral adjuvants. In particular, we will specially focus on polymeric nanoparticles as mucosal adjuvants that have been developed to stimulate lifelong memory for vaccination purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nepom, G.T.: Mucosal matters. Foreword. Nat. Rev. Immunol. 8, 409 (2008)

    PubMed  CAS  Google Scholar 

  2. Ramon, G.: Sur l’augmentation anormale de l’antitoxine chez les chevaux producteurs de serum antidiphterique. Bull. Soc. Centr. Med. Vet. 101, 227–234 (1925)

    Google Scholar 

  3. Glenny, A., Pope, C., Waddington, H., Wallace, V.: The antigenic value of toxoid precipitated by potassium-alum. J. Path. Bacteriol. 29, 38–45 (1926)

    Google Scholar 

  4. Holmgren, J., Czerkinsky, C.: Mucosal immunity and vaccines. Nat. Med. 11, S45–S53 (2005)

    PubMed  CAS  Google Scholar 

  5. Czerkinsky, C., Holmgren, J.: Mucosal delivery routes for optimal immunization: targeting immunity to the right tissues. Curr. Top. Microbiol. Immunol. 354, 1–18 (2012)

    PubMed  CAS  Google Scholar 

  6. Mayer, L.: Mucosal immunity and gastrointestinal antigen processing. J. Pediatr. Gastroenterol. Nutr. 30, S4–S12 (2000)

    PubMed  CAS  Google Scholar 

  7. Ng, S.C., Kamm, M.A., Stagg, A.J., Knight, S.C.: Intestinal dendritic cells: their role in bacterial recognition, lymphocyte homing, and intestinal inflammation. Inflamm. Bowel Dis. 16, 1787–1807 (2010)

    PubMed  CAS  Google Scholar 

  8. Persson, K.E., Jaensson, E., Agace, W.W.: The diverse ontogeny and function of murine small intestinal dendritic cell/macrophage subsets. Immunobiology 215, 692–697 (2010)

    PubMed  CAS  Google Scholar 

  9. Rescigno, M., Di Sabatino, A.: Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 119, 2441–2450 (2009)

    PubMed  CAS  Google Scholar 

  10. Sato, A., Hashiguchi, M., Toda, E., Iwasaki, A., Hachimura, S., Kaminogawa, S.: CD11b + Peyer’s patch dendritic cells secrete IL-6 and induce IgA secretion from naive B cells. J. Immunol. 171, 3684–3690 (2003)

    PubMed  CAS  Google Scholar 

  11. Devriendt, B., Devriendt, B., De Geest, B.G., Goddeeris, B.M., Cox, E.: Crossing the barrier: targeting epithelial receptors for enhanced oral vaccine delivery. J. Control. Release 160, 431–439 (2012)

    PubMed  CAS  Google Scholar 

  12. Dudziak, D., Kamphorst, A.O., Heidkamp, G.F., Buchholz, V.R., Trumpfheller, C., Yamazaki, S., Cheong, C., Liu, K., Lee, H.W., Park, C.G., Steinman, R.M., Nussenzweig, M.C.: Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007)

    PubMed  CAS  Google Scholar 

  13. Freytag, L.C., Clements, J.D., Eliasson, D.G., Lycke, N.: Use of genetically or chemically detoxified mutants of cholera and Escherichia coli heat-labile enterotoxins as mucosal adjuvants. In: Levine, M.M. (ed.) New Generation Vaccines, 4th edn, pp. 273–283. Informa Healthcare USA, New York (2010)

    Google Scholar 

  14. Fan, E., O'Neal, C.J., Mitchell, D.D., Robien, M.A., Zhang, Z., Pickens, J.C., Tan, X.J., Korotkov, K., Roach, C., Krumm, B., Verlinde, C.L., Merritt, E.A., Hol, W.G.: Structural biology and structure-based inhibitor design of cholera toxin and heat-labile enterotoxin. Int. J. Med. Microbiol. 294, 217–223 (2004)

    PubMed  CAS  Google Scholar 

  15. Lavelle, E.C., Jarnicki, A., McNeela, E., Armstrong, M.E., Higgins, S.C., Leavy, O., Mills, K.H.: Effects of cholera toxin on innate and adaptive immunity and its application as an immunomodulatory agent. J. Leukoc. Biol. 75, 756–763 (2004)

    PubMed  CAS  Google Scholar 

  16. Lavelle, E.C., McNeela, E., Armstrong, M.E., Leavy, O., Higgins, S.C., Mills, K.H.: Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J. Immunol. 171, 2384–2392 (2003)

    PubMed  CAS  Google Scholar 

  17. Lycke, N.: Targeted vaccine adjuvants based on modified cholera toxin. Curr. Mol. Med. 5, 591–597 (2005)

    PubMed  CAS  Google Scholar 

  18. Vajdy, M., Lycke, N.Y.: Cholera toxin adjuvant promotes long-term immunological memory in the gut mucosa to unrelated immunogens after oral immunization. Immunology 75, 488–492 (1992)

    PubMed  CAS  Google Scholar 

  19. Soenawan, E., Srivastava, I., Gupta, S., Kan, E., Janani, R., Kazzaz, J., Singh, M., Shreedhar, V., Vajdy, M.: Maintenance of long-term immunological memory by low avidity IgM-secreting cells in bone marrow after mucosal immunizations with cholera toxin adjuvant. Vaccine 22, 1553–1563 (2004)

    PubMed  CAS  Google Scholar 

  20. Schwickert, T.A., Alabyev, B., Manser, T., Nussenzweig, M.C.: Germinal center reutilization by newly activated B cells. J. Exp. Med. 206, 2907–2914 (2009)

    PubMed  CAS  Google Scholar 

  21. Fujihashi, K., Koga, T., van Ginkel, F.W., Hagiwara, Y., McGhee, J.R.: A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants. Vaccine 20, 2431–2438 (2002)

    PubMed  CAS  Google Scholar 

  22. Miron, N., Cristea, V.: Enterocytes: active cells in tolerance to food and microbial antigens in the gut. Clin. Exp. Immunol. 167, 405–412 (2011)

    Google Scholar 

  23. Blander, M.J., Sander, L.E.: Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nat. Rev. Immunol. 12, 215–225 (2012)

    PubMed  CAS  Google Scholar 

  24. Takeda, K., Kaisho, T., Akira, S.: Toll-like receptors. Annu. Rev. Immunol. 21, 335–376 (2003)

    PubMed  CAS  Google Scholar 

  25. Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., Akira, S.: Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002)

    Google Scholar 

  26. Gewirtz, T.: Intestinal epithelial toll-like receptors: to protect. And serve? Curr. Pharm. Des. 9, 1–5 (2003)

    PubMed  CAS  Google Scholar 

  27. Tyrer, P., Foxwell, A.R., Cripps, A.W., Apicella, M.A., Kyd, J.M.: Microbial pattern recognition receptors mediate M-Cell uptake of a gram-negative bacterium. Infect. Immun. 74(1), 625–631 (2006)

    PubMed  CAS  Google Scholar 

  28. Kawamura, Y.I., Kawashima, R., Shirai, Y., Kato, R., Hamabata, T., Yamamoto, M., Furukawa, K., Fujihashi, K., McGhee, J.R., Hayashi, H., Dohi, T.: Cholera toxin activates dendritic cells through dependence on GM1-ganglioside which is mediated by NF-kappaB translocation. Eur. J. Immunol. 33, 3205–3212 (2003)

    PubMed  CAS  Google Scholar 

  29. Agren, L., Löwenadler, B., Lycke, N.: A novel concept in mucosal adjuvanticity: the CTA1-DD adjuvant is a B cell-targeted fusion protein that incorporates the enzymatically active cholera toxin A1 subunit. Immunol. Cell Biol. 76, 280–287 (1998)

    PubMed  CAS  Google Scholar 

  30. van Ginkel, F.W., Jackson, R.J., Yuki, Y., McGhee, J.R.: Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J. Immunol. 165, 4778–4782 (2000)

    PubMed  Google Scholar 

  31. Eliasson, D.G., El Bakkouri, K., Schön, K., Ramne, A., Festjens, E., Löwenadler, B., Fiers, W., Saelens, X., Lycke, N.: CTA1-M2e-DD: a novel mucosal adjuvant targeted influenza vaccine. Vaccine 26, 1243–1252 (2008)

    PubMed  CAS  Google Scholar 

  32. Giuliani, M.M., Del Giudice, G., Giannelli, V., Dougan, G., Douce, G., Rappuoli, R., Pizza, M.: Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J. Exp. Med. 187, 1123–1132 (1998)

    PubMed  CAS  Google Scholar 

  33. Summerton, N.A., Welch, R.W., Bondoc, L., Yang, H.H., Pleune, B., Ramachandran, N., Harris, A.M., Bland, D., Jackson, W.J., Park, S., Clements, J.D., Nabors, G.S.: Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of Escherichia coli heat-labile toxin. Vaccine 28, 1404–1411 (2010)

    PubMed  CAS  Google Scholar 

  34. Spencer, S.P., Belkaid, Y.: Dietary and commensal derived nutrients: shaping mucosal and systemic immunity. Curr. Opin. Immunol. 24, 379–384 (2012)

    PubMed  CAS  Google Scholar 

  35. Holmgren, J., Svennerholm, A.M.: Vaccines against mucosal infections. Curr. Opin. Immunol. 24, 343–353 (2012)

    PubMed  CAS  Google Scholar 

  36. Dunne, A., Marshall, N.A., Mills, K.H.: TLR based therapeutics. Curr. Opin. Pharmacol. 11, 404–411 (2011)

    PubMed  CAS  Google Scholar 

  37. Higgins, S.C., Mills, K.H.: TLR, NLR agonists, and other immune modulators as infectious disease vaccine adjuvants. Curr. Infect. Dis. Rep. 12, 4–12 (2010)

    PubMed  Google Scholar 

  38. Men, Y., Audran, R., Thomasin, C., Eberl, G., Demotz, S., Merkle, H.P., Gander, B., Corradin, G.: MHC class I- and class II-restricted processing and presentation of microencapsulated antigens. Vaccine 17, 1047–1056 (1999)

    PubMed  CAS  Google Scholar 

  39. Lefrancois, L.: Development, trafficking, and function of memory T-cell subsets. Immunol. Rev. 211, 93–103 (2006)

    PubMed  CAS  Google Scholar 

  40. Sallusto, F., Mackay, C.R., Lanzavecchia, A.: The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000)

    PubMed  CAS  Google Scholar 

  41. Khader, S.A., Gaffen, S.L., Kolls, J.K.: Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2, 403–411 (2009)

    PubMed  CAS  Google Scholar 

  42. Rubas, W., Banerjea, A.C., Gallati, H., Speiser, P.P., Joklik, W.K.: Incorporation of the reovirus M cell attachment protein into small unilamellar vesicles: incorporation efficiency and binding capability to L929 cells in vitro. J. Microencapsul. 7, 385–395 (1990)

    PubMed  CAS  Google Scholar 

  43. Hase, K., Kawano, K., Nochi, T., Pontes, G.S., Fukuda, S., Ebisawa, M., Kadokura, K., Tobe, T., Fujimura, Y., Kawano, S., Yabashi, A., Waguri, S., Nakato, G., Kimura, S., Murakami, T., Iimura, M., Hamura, K., Fukuoka, S., Lowe, A.W., Itoh, K., Kiyono, H., Ohno, H.: Uptake through glycoprotein 2 of FimH + bacteria by M cells initiates mucosal immune response. Nature 462, 226–230 (2009)

    PubMed  CAS  Google Scholar 

  44. Verdonck, F., De Hauwere, V., Bouckaert, J., Goddeeris, B.M., Cox, E.: Fimbriae of enterotoxigenic Escherichia coli function as a mucosal carrier for a coupled heterologous antigen. J. Control. Release 104, 243–258 (2005)

    PubMed  CAS  Google Scholar 

  45. Melkebeek, V., Rasschaert, K., Bellot, P., Tilleman, K., Favoreel, H., Deforce, D., De Geest, B.G., Goddeeris, B.M., Cox, E.: Targeting aminopeptidase N, a newly identified receptor for F4ac fimbriae, enhances the intestinal mucosal immune response. Mucosal Immunol. 5(6), 635–645 (2012)

    PubMed  CAS  Google Scholar 

  46. Suzuki, T., Yoshikawa, Y., Ashida, H., Iwai, H., Toyotome, T., Matsui, H., Sasakawa, C.: High vaccine efficacy against shigellosis of recombinant non-invasive Shigella mutant that expresses Yersinia invasion. J. Immunol. 177, 4709–4717 (2006)

    PubMed  CAS  Google Scholar 

  47. Chadwick, S., Kriegel, C., Amiji, M.: Delivery strategies to enhance mucosal vaccination. Expert Opin. Biol. Ther. 9, 427–440 (2009)

    PubMed  CAS  Google Scholar 

  48. Fox, C.B., Friede, M., Reed, S.G., Ireton, G.C.: Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcel. Biochem. 53, 303–321 (2010)

    CAS  Google Scholar 

  49. Neal, M.D., Leaphart, C., Levy, R., Prince, J., Billiar, T.R., Watkins, S., Li, J., Cetin, S., Ford, H., Schreiber, A., Hackam, D.J.: Enterocyte TLR4 mediates phagocytosis and transcytosis of bacteria across the intestinal barrier. J. Immunol. 176, 3070–3079 (2006)

    PubMed  CAS  Google Scholar 

  50. Gómez, S., Gamazo, C., Roman, B.S., Ferrer, M., Sanz, M.L., Irache, J.M.: Gantrez® AN nanoparticles as an adjuvant for oral immunotherapy with allergens. Vaccine 25, 5263–5271 (2007)

    PubMed  Google Scholar 

  51. Schwarz, T.: Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine, cervarix®. Adv. Ther. 26, 983–998 (2009)

    PubMed  Google Scholar 

  52. Cranage, M.P., Fraser, C.A., Cope, A., McKay, P.F., Seaman, M.S., Cole, T., Mahmoud, A.N., Hall, J., Giles, E., Voss, G., Page, M., Almond, N., Shattock, R.J.: Antibody responses after intravaginal immunisation with trimeric HIV-1CN54 clade C gp140 in Carbopol gel are augmented by systemic priming or boosting with an adjuvanted formulation. Vaccine 4, 1421–1430 (2011)

    Google Scholar 

  53. Mizel, S.B., Bates, J.T.: Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol. 185, 5677–5682 (2010)

    PubMed  CAS  Google Scholar 

  54. Salman, H.H., Irache, J.M., Gamazo, C.: Immunoadjuvant capacity of flagellin and mannosamine-coated poly(anhydride) nanoparticles in oral vaccination. Vaccine 27, 4784–4790 (2009)

    PubMed  CAS  Google Scholar 

  55. Salman, H.H., Gamazo, C., Campanero, M.A., Irache, J.M.: Salmonella-like bioadhesive nanoparticles. J. Control. Release 106, 1–13 (2005)

    PubMed  CAS  Google Scholar 

  56. Uematsu, S., Fujimoto, K., Jang, M.H., Yang, B.G., Jung, Y.J., Nishiyama, M., Sato, S., Tsujimura, T., Yamamoto, M., Yokota, Y., Kiyono, H., Miyasaka, M., Ishii, K.J., Akira, S.: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769–776 (2008)

    PubMed  CAS  Google Scholar 

  57. Harandi, A.M.J., Holmgren, J.: CpG DNA as a potent inducer of mucosal immunity: implications for immunoprophylaxis and immunotherapy of mucosal infections. Curr. Opin. Invest. Drugs 5, 141–145 (2004)

    CAS  Google Scholar 

  58. Lawson, L.B., Norton, E.B., Clements, J.D.: Defending the mucosa: adjuvant and carrier formulations for mucosal immunity. Curr. Opin. Immunol. 23, 414–420 (2011)

    PubMed  CAS  Google Scholar 

  59. Courtney, A.N., Nehete, P.N., Nehete, B.P., Thapa, P., Zhou, D., Sastry, K.J.: Alpha-galactosylceramide is an effective mucosal adjuvant for repeated intranasal or oral delivery of HIV peptide antigens. Vaccine 27, 3335–3341 (2009)

    PubMed  CAS  Google Scholar 

  60. Agrawal, S., Gupta, S., Agrawal, A.: Human dendritic cells activated via dectin-1 are efficient at priming Th17, cytotoxic CD8T and B cell responses. PLoS One 5(10), e13418 (2010)

    PubMed  Google Scholar 

  61. Da Costa Martins, R., Gamazo, C., Sánchez-Martínez, M., Barberán, M., Peñuelas, I., Irache, J.M.: Conjunctival vaccination against Brucella ovis in mice with mannosylated nanoparticles. J. Control. Release 162, 553–560 (2012)

    PubMed  Google Scholar 

  62. Salman, H.H., Gamazo, C., Campanero, M.A., Irache, J.M.: Bioadhesive mannosylated nanoparticles for oral drug delivery. J. Nanosci. Nanotechnol. 6, 3203–3209 (2006)

    PubMed  CAS  Google Scholar 

  63. Carrillo-Conde, B., Song, E.H., Chavez-Santoscoy, A., Phanse, Y., Ramer-Tait, A.E., Pohl, N.L., Wannemuehler, M.J., Bellaire, B.H., Narasimhan, B.: Mannose-functionalized “pathogen-like” polyanhydride nanoparticles target C-type lectin receptors on dendritic cells. Mol. Pharm. 8, 1877–1886 (2011)

    PubMed  CAS  Google Scholar 

  64. Chen, W., Kuolee, R., Yan, H.: The potential of 3׳,5׳-cyclic diguanylic acid (c-di-GMP) as an effective vaccine adjuvant. Vaccine 28, 3080–3085 (2010)

    PubMed  CAS  Google Scholar 

  65. Clark, M.A., Hirst, B.H., Jepson, M.A.: Lectin-mediated mucosal delivery of drugs and microparticles. Adv. Drug Deliv. Rev. 43, 207–223 (2000)

    PubMed  CAS  Google Scholar 

  66. Jepson, M.A., Clark, M.A., Hirst, B.H.: M cell targeting by lectins: a strategy for mucosal vaccination and drug delivery. Adv. Drug Deliv. Rev. 56, 511–525 (2004)

    PubMed  CAS  Google Scholar 

  67. Rajapaksa, T.E., Lo, D.D.: Microencapsulation of vaccine antigens and adjuvants for mucosal targeting. Curr. Immunol. Rev. 6, 29–37 (2010)

    CAS  Google Scholar 

  68. Nochi, T., Yuki, Y., Matsumura, A., Mejima, M., Terahara, K., Kim, D.Y., Fukuyama, S., Iwatsuki-Horimoto, K., Kawaoka, Y., Kohda, T., Kozaki, S., Igarashi, O., Kiyono, H.: A novel M cell-specific carbohydrate-targeted mucosal vaccine effectively induces antigen-specific immune responses. J. Exp. Med. 204, 2789–2796 (2007)

    PubMed  CAS  Google Scholar 

  69. Kayamuro, H., Yoshioka, Y., Abe, Y., Arita, S., Katayama, K., Nomura, T., Yoshikawa, T., Kubota-Koketsu, R., Ikuta, K., Okamoto, S., Mori, Y., Kunisawa, J., Kiyono, H., Itoh, N., Nagano, K., Kamada, H., Tsutsumi, Y., Tsunoda, S.: Interleukin-1 family cytokines as mucosal vaccine adjuvants for induction of protective immunity against influenza virus. J. Virol. 84, 12703–12712 (2010)

    PubMed  CAS  Google Scholar 

  70. Tovey, M.G., Lallemand, C.: Adjuvant activity of cytokines. Methods Mol. Biol. 626, 287–309 (2010)

    PubMed  CAS  Google Scholar 

  71. Gmajner, D., Ota, A., Sentjurc, M., Ulrih, N.P.: Stability of diether C25,25liposomes from the hyperthermophilic archaeon Aeropyrum pernix K1. Chem. Phys. Lipids 164, 236–245 (2011)

    PubMed  CAS  Google Scholar 

  72. Nordly, P., Madsen, H.B., Nielsen, H.M., Foged, C.: Status and future prospects of lipid-based particulate delivery systems as vaccine adjuvants and their combination with immunostimulators. Expert Opin. Drug Deliv. 6, 657–672 (2009)

    PubMed  CAS  Google Scholar 

  73. Kersten, G.F., Crommelin, D.J.: Liposomes and ISCOMs. Vaccine 21, 915–920 (2003)

    PubMed  CAS  Google Scholar 

  74. Rao, R., Squillante, E.I.I.I., Kim, K.H.: Lipid-based cochleates: a promising formulation platform for oral and parenteral delivery of therapeutic agents. Crit. Rev. Ther. Drug Carrier Syst. 24, 41–61 (2007)

    PubMed  CAS  Google Scholar 

  75. McDermott, M.R., Heritage, P.L., Bartzoka, V., Brook, M.A.: Polymer-grafted starch microparticles for oral and nasal immunization. Immunol. Cell Biol. 76, 256–262 (1998)

    PubMed  CAS  Google Scholar 

  76. Eldridge, J.H., Gilley, R.M., Staas, J.K., Moldoveanu, Z., Meulbroek, J.A., Tice, T.R.: Biodegradable microspheres: vaccine delivery system for oral immunization. Curr. Top. Microbiol. Immunol. 146, 59–66 (1989)

    PubMed  CAS  Google Scholar 

  77. Payne, L.G., Jenkins, S.A., Andrianov, A., Roberts, B.E.: Water-soluble phosphazene polymers for parenteral and mucosal vaccine delivery. Pharm. Biotechnol. 6, 473–493 (1995)

    PubMed  CAS  Google Scholar 

  78. Payne, L.G., Jenkins, S.A., Woods, A.L., Grund, E.M., Geribo, W.E., Loebelenz, J.R., Andrianov, A.K., Roberts, B.E.: Poly[di(carboxylatophenoxy)phosphazene] (PCPP) is a potent immunoadjuvant for an influenza vaccine. Vaccine 16, 92–98 (1998)

    PubMed  CAS  Google Scholar 

  79. Arbós, P., Campanero, M.A., Arangoa, M.A., Renedo, M.J., Irache, J.M.: Influence of the surface characteristics of PVM/MA nanoparticles on their bioadhesive properties. J. Control. Release 89, 19–30 (2003)

    PubMed  Google Scholar 

  80. Olbrich, C., Müller, R.H., Tabatt, K., Kayser, O., Schulze, C., Schade, R.: Stable biocompatible adjuvants – a new type of adjuvant based on solid lipid nanoparticles: a study on cytotoxicity, compatibility and efficacy in chicken. Altern. Lab. Anim. 30, 443–458 (2002)

    PubMed  CAS  Google Scholar 

  81. Storni, T., Kündig, T.M., Senti, G., Johansen, P.: Immunity in response to particulate antigen-delivery systems. Adv. Drug Deliv. Rev. 57, 333–355 (2005)

    PubMed  CAS  Google Scholar 

  82. Krahenbuhl, J.P., Neutra, M.R.: Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332 (2000)

    Google Scholar 

  83. Espuelas, S., Irache, J.M., Gamazo, C.: Synthetic particulate antigen delivery systems for vaccination. Inmunologia 24, 207–223 (2005)

    Google Scholar 

  84. O'Hagan, D.T., Jeffery, H., Maloy, K.J., Mowat, A.M., Rahman, D., Challacombe, S.J.: Biodegradable microparticles as oral vaccines. Adv. Exp. Med. Biol. 371B, 1463–1467 (1995)

    PubMed  Google Scholar 

  85. Vila, A., Sánchez, A., Tobío, M., Calvo, P., Alonso, M.J.: Design of biodegradable particles A. for protein delivery. J. Control. Release 78, 15–24 (2002)

    PubMed  CAS  Google Scholar 

  86. Yoncheva, K., Gómez, S., Campanero, M.A., Gamazo, C., Irache, J.M.: Bioadhesive properties of pegylated nanoparticles. Expert Opin. Drug Deliv. 2(2), 205–218 (2005)

    PubMed  CAS  Google Scholar 

  87. Yoncheva, K., Lizarraga, E., Irache, J.M.: Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. Eur. J. Pharm. Sci. 24, 411–419 (2005)

    PubMed  CAS  Google Scholar 

  88. Fadl, A.A., Venkitanarayanan, K.S., Khan, M.I.: Identification of Salmonella enteritidis outer membrane proteins expressed during attachment to human intestinal epithelial cells. J. Appl. Microbiol. 92, 180–186 (2002)

    PubMed  CAS  Google Scholar 

  89. Allen-Vercoe, E., Woodward, M.J.: The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J. Med. Microbiol. 48, 771–780 (1999)

    PubMed  CAS  Google Scholar 

  90. Humphries, A.D., Townsend, S.M., Kingsley, R.A., Nicholson, T.L., Tsolis, R.M., Bäumler, A.J.: Role of fimbriae as antigens and intestinal colonization factors of Salmonella serovars. FEMS Microbiol. Lett. 201, 121–125 (2001)

    PubMed  CAS  Google Scholar 

  91. Kaltner, H., Stierstorfer, B.: Animal lectins as cell adhesion molecules. Acta Anat. (Basel) 161, 162–179 (1998)

    CAS  Google Scholar 

  92. Lloyd, D.H., Viac, J., Werling, D., Rème, C.A., Gatto, H.: Role of sugars in surface microbe-host interactions and immune reaction modulation. Vet. Dermatol. 18, 197–204 (2007)

    PubMed  Google Scholar 

  93. Conway, M.A., Madrigal-Estebas, L., McClean, S., Brayden, D.J., Mills, K.H.: Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 19, 1940–1950 (2001)

    PubMed  CAS  Google Scholar 

  94. Carcaboso, A.M., Hernández, R.M., Igartua, M., Gascón, A.R., Rosas, J.E., Patarroyo, M.E., Pedraz, J.L.: Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int. J. Pharm. 260, 273–282 (2003)

    PubMed  CAS  Google Scholar 

  95. Sundling, C., Schön, K., Mörner, A., Forsell, M.N., Wyatt, R.T., Thorstensson, R., Karlsson Hedestam, G.B., Lycke, N.Y.: CTA1-DD adjuvant promotes strong immunity against human immunodeficiency virus type 1 envelope glycoproteins following mucosal immunization. J. Gen. Virol. 89, 2954–2964 (2008)

    PubMed  CAS  Google Scholar 

  96. Helgeby, A., Robson, N.C., Donachie, A.M., Beackock-Sharp, H., Lövgren, K., Schön, K., Mowat, A., Lycke, N.Y.: The combined CTA1-DD/ISCOM adjuvant vector promotes priming of mucosal and systemic immunity to incorporated antigens by specific targeting of B cells. J. Immunol. 176, 3697–3706 (2006)

    PubMed  CAS  Google Scholar 

  97. Smith, R.E., Donachie, A.M., Grdic, D., Lycke, N., Mowat, A.M.: Immune-stimulating complexes induce an IL-12-dependent cascade of innate immune responses. J. Immunol. 162, 5536–5546 (1999)

    PubMed  CAS  Google Scholar 

  98. Dalle, F., Jouault, T., Trinel, P.A., Esnault, J., Mallet, J.M., d’Athis, P., Poulain, D., Bonnin, A.: Beta-1,2- and alpha-1,2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect. Immun. 71, 7061–7068 (2003)

    PubMed  CAS  Google Scholar 

  99. Irache, J.M., Salman, H.H., Gamazo, C., Espuelas, S.: Mannose-targeted systems for the delivery of therapeutics. Expert Opin. Drug Deliv. 5, 703–724 (2008)

    PubMed  CAS  Google Scholar 

  100. Jack, D.L., Turner, M.W.: Anti-microbial activities of mannose-binding lectin. Biochem. Soc. Trans. 31, 753–775 (2003)

    PubMed  CAS  Google Scholar 

  101. Uemura, K., Hiromatsu, K., Xiong, X., Sugita, M., Buhlmann, J.E., Dodge, I.L., Lee, S.Y., Roura-Mir, C., Watts, G.F., Roy, C.J., Behar, S.M., Clemens, D.L., Porcelli, S.A., Brenner, M.B.: Conservation of CD1 intracellular trafficking patterns between mammalian species. J. Immunol. 169, 6945–6958 (2002)

    PubMed  CAS  Google Scholar 

  102. Wagner, S., Lynch, N.J., Walter, W., Schwaeble, W.J., Loos, M.: Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J. Immunol. 170, 1462–1465 (2003)

    PubMed  CAS  Google Scholar 

  103. Tamayo, I., Irache, J.M., Mansilla, C., Ochoa-Repáraz, J., Lasarte, J.J., Gamazo, C.: Poly(anhydride) nanoparticles as adjuvants for mucosal vaccination. Front. Biosci. (Schol. Ed.) 2, 876–890 (2010)

    Google Scholar 

  104. Wang, T., Zou, M., Jiang, H., Ji, Z., Gao, P., Cheng, G.: Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. Eur. J. Pharm. Sci. 44(5), 653–659 (2011)

    PubMed  CAS  Google Scholar 

  105. Jang, S.I., Lillehoj, H.S., Lee, S.H., Lee, K.W., Lillehoj, E.P., Bertrand, F., Dupuis, L., Deville, S.: TMIMS 1313 N VG PR nanoparticle adjuvant enhances antigen-specific immune responses to profilin following mucosal vaccination against Eimeria acervulina. Vet. Parasitol. 182(2–4), 163–170 (2011)

    PubMed  CAS  Google Scholar 

  106. Vandamme, K., Melkebeek, V., Cox, E., Adriaensens, P., Van Vlierberghe, S., Dubruel, P., Vervaet, C., Remon, J.P.: Influence of polymer hydrolysis on adjuvant effect of Gantrez® AN nanoparticles: implications for oral vaccination. Eur. J. Pharm. Biopharm. 79(2), 392–398 (2011)

    PubMed  CAS  Google Scholar 

  107. Sarti, F., Perera, G., Hintzen, F., Kotti, K., Karageorgiou, V., Kammona, O., Kiparissides, C., Bernkop-Schnürch, A.: In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32(16), 4052–4057 (2011)

    PubMed  CAS  Google Scholar 

  108. Tian, J., Yu, J.: Poly(lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 30(1), 109–117 (2011)

    PubMed  Google Scholar 

  109. Mishra, N., Tiwari, S., Vaidya, B., Agrawal, G.P., Vyas, S.P.: Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J. Drug Target. 19(1), 67–78 (2011)

    PubMed  CAS  Google Scholar 

  110. Jain, A.K., Goyal, A.K., Mishra, N., Vaidya, B., Mangal, S.: Vyas SP PEG-PLA-PEG block copolymeric nanoparticles for oral immunization against hepatitis B. Int. J. Pharm. 387(1–2), 253–262 (2010)

    PubMed  CAS  Google Scholar 

  111. Mann, J.F., Shakir, E., Carter, K.C., Mullen, A.B., Alexander, J., Ferro, V.A.: Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 27, 3643–3649 (2009)

    PubMed  CAS  Google Scholar 

  112. Li, G.P., Liu, Z.G., Liao, B., Zhong, N.S.: Induction of Th1-type immune response by chitosan nanoparticles containing plasmid DNA encoding house dust mite allergen Der p 2 for oral vaccination in mice. Cell. Mol. Immunol. 6(1), 45–50 (2009)

    PubMed  CAS  Google Scholar 

  113. Oyewumi, M.O., Kumar, A., Cui, Z.: Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines 9, 1095–1107 (2010)

    PubMed  CAS  Google Scholar 

  114. Gutierro, I., Hernández, R.M., Igartua, M., Gascón, A.R., Pedraz, J.L.: Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 21, 67–77 (2002)

    PubMed  CAS  Google Scholar 

  115. Kanchan, V., Panda, A.K.: Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28, 5344–5357 (2007)

    PubMed  CAS  Google Scholar 

  116. Jung, T., Kamm, W., Breitenbach, A., Hungerer, K.D., Hundt, E., Kissel, T.: Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm. Res. 18, 352–360 (2001)

    PubMed  CAS  Google Scholar 

  117. Wendorf, J., Chesko, J., Kazzaz, J., Ugozzoli, M., Vajdy, M., O'Hagan, D., Singh, M.: A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum. Vaccin. 4, 44–49 (2008)

    PubMed  CAS  Google Scholar 

  118. Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G.A., Li, J., Mottram, P.L., McKenzie, I.F., Plebanski, M.: Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004)

    PubMed  CAS  Google Scholar 

  119. Kalkanidis, M., Pietersz, G.A., Xiang, S.D., Mottram, P.L., Crimeen-Irwin, B., Ardipradja, K., Plebanski, M.: Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods 40, 20–29 (2006)

    PubMed  CAS  Google Scholar 

  120. Mottram, P.L., Leong, D., Crimeen-Irwin, B., Gloster, S., Xiang, S.D., Meanger, J., Ghildyal, R., Vardaxis, N., Plebanski, M.: Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4, 73–84 (2007)

    PubMed  CAS  Google Scholar 

  121. Caputo, A., Castaldello, A., Brocca-Cofano, E., Voltan, R., Bortolazzi, F., Altavilla, G., Sparnacci, K., Laus, M., Tondelli, L., Gavioli, R., Ensoli, B.: Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration. Vaccine 27, 3605–3615 (2009)

    PubMed  CAS  Google Scholar 

  122. Estevan, M., Irache, J.M., Grilló, M.J., Blasco, J.M., Gamazo, C.: Encapsulation of antigenic extracts of Salmonella enterica serovar. Abortus-ovis into polymeric systems and efficacy as vaccines in mice. Vet. Microbiol. 118, 124–132 (2006)

    PubMed  CAS  Google Scholar 

  123. Shakweh, M., Ponchel, G., Fattal, E.: Particle uptake by Peyer’s patches: a pathway for drug and vaccine delivery. Expert Opin. Drug Deliv. 1, 141–163 (2004)

    PubMed  CAS  Google Scholar 

  124. Peppoloni, S., Ruggiero, P., Contorni, M., Morandi, M., Pizza, M., Rappuoli, R., Podda, A., Del Giudice, G.: Mutants of the Escherichia coli heat-labile enterotoxin as safe and strong adjuvants for intranasal delivery of vaccines. Expert Rev. Vaccines 2, 285–293 (2003)

    PubMed  CAS  Google Scholar 

  125. Maloy, K.J., Donachie, A.M., O'Hagan, D.T., Mowat, A.M.: Induction of mucosal and systemic immune responses by immunization with ovalbumin entrapped in poly(lactide-co-glycolide) microparticles. Immunology 81, 661–667 (1994)

    PubMed  CAS  Google Scholar 

  126. Kim, S.Y., Doh, H.J., Jang, M.H., Ha, Y.J., Chung, S.I., Park, H.J.: Oral immunization with Helicobacter pylori-loaded poly(D, L-lactide-co-glycolide) nanoparticles. Helicobacter 4, 33–39 (1999)

    PubMed  CAS  Google Scholar 

  127. Katz, D.E., DeLorimier, A.J., Wolf, M.K., Hall, E.R., Cassels, F.J., van Hamont, J.E., Newcomer, R.L., Davachi, M.A., Taylor, D.N., McQueen, C.E.: Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen. Vaccine 21, 341–346 (2003)

    PubMed  CAS  Google Scholar 

  128. Otterlei, M., Vårum, K.M., Ryan, L., Espevik, T.: Characterization of binding and TNF-alpha-inducing ability of chitosans on monocytes: the involvement of CD14. Vaccine 12, 825–832 (1994)

    PubMed  CAS  Google Scholar 

  129. Porporatto, C., Bianco, I.D., Correa, S.G.: Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J. Leukoc. Biol. 78, 62–69 (2005)

    PubMed  CAS  Google Scholar 

  130. Kumar, N., Langer, R.S., Domb, A.J.: Polyanhydrides: an overview. Adv. Drug Deliv. Rev. 54, 889–910 (2002)

    PubMed  CAS  Google Scholar 

  131. Torres, M.P., Wilson-Welder, J.H., Lopac, S.K., Phanse, Y., Carrillo-Conde, B., Ramer-Tait, A.E., Bellaire, B.H., Wannemuehler, M.J., Narasimhan, B.: Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta Biomater. 7, 2857–2864 (2011)

    PubMed  CAS  Google Scholar 

  132. Petersen, L.K., Ramer-Tait, A.E., Broderick, S.R., Kong, C.S., Ulery, B.D., Rajan, K., Wannemuehler, M.J., Narasimhan, B.: Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 32, 6815–6822 (2011)

    PubMed  CAS  Google Scholar 

  133. Ulery, B.D., Phanse, Y., Sinha, A., Wannemuehler, M.J., Narasimhan, B., Bellaire, B.H.: Polymer chemistry influences monocytic uptake of polyanhydride nanospheres. Pharm. Res. 26, 683–690 (2009)

    PubMed  CAS  Google Scholar 

  134. Ulery, B.D., Kumar, D., Ramer-Tait, A.E., Metzger, D.W., Wannemuehler, M.J., Narasimhan, B.: Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One 6(3), e17642 (2011). doi:10.1371/journal.pone.0017642

    PubMed  CAS  Google Scholar 

  135. Ochoa, J., Irache, J.M., Tamayo, I., Walz, A., DelVecchio, V.G., Gamazo, C.: Protective immunity of biodegradable nanoparticle-based vaccine against an experimental challenge with Salmonella enteritidis in mice. Vaccine 25, 4410–4419 (2007)

    PubMed  CAS  Google Scholar 

  136. Gómez, S., Gamazo, C., San Roman, B., Vauthier, C., Ferrer, M., Irachel, J.M.: Development of a novel vaccine delivery system based on Gantrez nanoparticles. J. Nanosci. Nanotechnol. 6, 3283–3289 (2006)

    PubMed  Google Scholar 

  137. Tamayo, I., Irache, J.M., Mansilla, C., Ochoa-Repáraz, J., Lasarte, J.J., Gamazo, C.: Poly(anhydride) nanoparticles act as active Th1 adjuvants through toll-like receptor exploitation. Clin. Vaccine Immunol. 17, 1356–1362 (2010)

    PubMed  CAS  Google Scholar 

  138. Camacho, A.I., Da Costa Martins, Tamayo, I., de Souza, J., Lasarte, J.J., Mansilla, C., Esparza, I., Irache, J.M., Gamazo, C.: Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine 22, 7130–7135 (2011)

    Google Scholar 

  139. Lycke, N., Bemark, M.: Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 3, 556–566 (2010)

    PubMed  CAS  Google Scholar 

  140. Kasturi, S.P., Skountzou, I., Albrecht, R.A., Koutsonanos, D., Hua, T., Nakaya, H.I., Ravindran, R., Stewart, S., Alam, M., Kwissa, M., Villinger, F., Murthy, N., Steel, J., Jacob, J., Hogan, R.J., García-Sastre, A., Compans, R., Pulendran, B.: Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011)

    PubMed  CAS  Google Scholar 

  141. Amanna, I.J., Carlson, N.E., Slifka, M.K.: Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357, 1903–1915 (2007)

    PubMed  CAS  Google Scholar 

  142. Hammarlund, E., Lewis, M.W., Hansen, S.G., Strelow, L.I., Nelson, J.A., Sexton, G.J., Hanifin, J.M., Slifka, M.K.: Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003)

    PubMed  CAS  Google Scholar 

  143. Querec, T.D., Akondy, R.S., Lee, E.K., Cao, W., Nakaya, H.I., Teuwen, D., Pirani, A., Gernert, K., Deng, J., Marzolf, B., Kennedy, K., Wu, H., Bennouna, S., Oluoch, H., Miller, J., Vencio, R.Z., Mulligan, M., Aderem, A., Ahmed, R., Pulendran, B.: Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009)

    PubMed  CAS  Google Scholar 

  144. Sharp, F.A., Ruane, D., Claass, B., Creagh, E., Harris, J., Malyala, P., Singh, M., O'Hagan, D.T., Pétrilli, V., Tschopp, J., O’Neill, L.A., Lavelle, E.C.: Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl. Acad. Sci. U. S. A. 106, 870–875 (2009)

    PubMed  CAS  Google Scholar 

  145. Li, H., Willingham, S.B., Ting, J.P., Re, F.: Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008)

    PubMed  CAS  Google Scholar 

  146. Correia-Pinto, J.F., Csaba, N., Alonso, M.J.: Vaccine delivery carriers: insights and future perspectives. Int. J. Pharm. 440(1), 27–38 (2013). doi:10.1016/j.bbr.2011.03.031

    PubMed  CAS  Google Scholar 

  147. Lambrecht, B.N., Kool, M., Willart, M.A., Hammad, H.: Mechanism of action of clinically approved adjuvants. Curr. Opin. Immunol. 21, 23–29 (2009)

    PubMed  CAS  Google Scholar 

  148. Tagliabue, A., Rappuoli, R.: Vaccine adjuvants: the dream becomes real. Hum. Vaccin. 4, 347–349 (2008)

    PubMed  CAS  Google Scholar 

  149. Chen, W., Patel, G.B., Yan, H., Zhang, J.: Recent advances in the development of novel mucosal adjuvants and antigen delivery systems. Hum. Vaccin. 6, 706–714 (2010)

    CAS  Google Scholar 

  150. Holmgren, J., Czerkinsky, C., Eriksson, K., Mharandi, A.: Mucosal immunisation and adjuvants: a brief overview of recent advances and challenges. Vaccine 21, S89–S95 (2003)

    PubMed  Google Scholar 

  151. Pulendran, B.: Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9, 741–747 (2009)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Gamazo PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gamazo, C., Irache, J.M. (2014). Antigen Delivery Systems as Oral Adjuvants. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_12

Download citation

Publish with us

Policies and ethics