Skip to main content

Emerging Nanotechnology Approaches for Pulmonary Delivery of Vaccines

  • Chapter
  • First Online:
Molecular Vaccines

Abstract

Pulmonary immunization has been recently explored as a suitable substitute for parenteral vaccination. Vaccine administered via pulmonary route can induce both systemic and local mucosal immune responses. The extensive population of dendritic cells (DC) in the respiratory epithelial lining and hub of macrophages (interstitium and the alveoli) plays important roles in the induction of strong immune response. There are several factors which have restricted the effectiveness of pulmonary immunization including poor deposition of the antigen at the alveolar region, low absorption from the epithelial barriers in the peripheral airways and the central lungs and the presence of a mucociliary escalator in the central and upper lung, which rapidly removes antigens or particles from the central respiratory tract. In past few years a number of highly effective novel nanocarriers have been developed for safe and effective vaccine delivery via pulmonary route. This chapter gives an overview of every aspects of pulmonary delivery of vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogra, P.L., Faden, H., Welliver, R.C.: Vaccination strategies for mucosal immune responses. Clin. Microbiol. Rev. 14, 430–45 (2001). doi:10.1128/CMR.14.2.430-445.2001

    PubMed  CAS  Google Scholar 

  2. Malik, B., Goyal, A.K., Mangal, S., Zakir, F., Vyas, S.P.: Implication of gut immunology in the design of oral vaccines. Curr. Mol. Med. 10, 47–70 (2010)

    PubMed  CAS  Google Scholar 

  3. Russell-Jones, G.J.: Oral vaccine delivery. J. Control. Release 65, 49–54 (2000)

    PubMed  CAS  Google Scholar 

  4. Cesta, M.F.: Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol. Pathol. 34, 599–608 (2006). doi:10.1080/01926230600865531

    PubMed  Google Scholar 

  5. Chadwick, S., Kriegel, C., Amiji, M.: Nanotechnology solutions for mucosal immunization. Adv. Drug Deliv. Rev. 62, 394–407 (2010). doi:10.1016/j.addr.2009.11.012

    PubMed  CAS  Google Scholar 

  6. McKenzie, B.S., Brady, J.L., Lew, A.M.: Mucosal immunity: overcoming the barrier for induction of proximal responses. Immunol. Res. 30, 35–71 (2004). doi:10.1385/IR:30:1:035

    PubMed  CAS  Google Scholar 

  7. Brandtzaeg, P., Pabst, R.: Let’s go mucosal: communication on slippery ground. Trends Immunol. 25, 570–7 (2004). doi:10.1016/j.it.2004.09.005

    PubMed  CAS  Google Scholar 

  8. Moghaddami, M., Cummins, A., Mayrhofer, G.: Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115, 1414–25 (1998)

    PubMed  CAS  Google Scholar 

  9. Malik, B., et al.: Microfold-cell targeted surface engineered polymeric nanoparticles for oral immunization. J. Drug Target. 20, 76–84 (2012). doi:10.3109/1061186X.2011.611516

    PubMed  Google Scholar 

  10. McCray Jr., P.B., Bentley, L.: Human airway epithelia express a beta-defensin. Am. J. Respir. Cell Mol. Biol. 16, 343–9 (1997)

    PubMed  CAS  Google Scholar 

  11. Larrick, J.W., et al.: Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun. 63, 1291–7 (1995)

    PubMed  CAS  Google Scholar 

  12. Bivas-Benita, M., Ottenhoff, T.H., Junginger, H.E., Borchard, G.: Pulmonary DNA vaccination: concepts, possibilities and perspectives. J. Control. Release 107, 1–29 (2005). doi:10.1016/j.jconrel.2005.05.028

    PubMed  CAS  Google Scholar 

  13. Bienenstock, J.: Gut and bronchus associated lymphoid tissue: an overview. Adv. Exp. Med. Biol. 149, 471–7 (1982)

    PubMed  CAS  Google Scholar 

  14. Kuper, C.F., et al.: The role of nasopharyngeal lymphoid tissue. Immunol. Today 13, 219–24 (1992)

    PubMed  CAS  Google Scholar 

  15. Tamura, S., Kurata, T.: Defense mechanisms against influenza virus infection in the respiratory tract mucosa. Jpn. J. Infect. Dis. 57, 236–47 (2004)

    PubMed  Google Scholar 

  16. Zuercher, A.W.: Upper respiratory tract immunity. Viral Immunol. 16, 279–89 (2003). doi:10.1089/088282403322396091

    PubMed  CAS  Google Scholar 

  17. Perry, M., Whyte, A.: Immunology of the tonsils. Immunol. Today 19, 414–21 (1998)

    PubMed  CAS  Google Scholar 

  18. Cerwenka, A., Morgan, T.M., Dutton, R.W.: Naive, effector, and memory CD8 T cells in protection against pulmonary influenza virus infection: homing properties rather than initial frequencies are crucial. J. Immunol. 163, 5535–43 (1999)

    PubMed  CAS  Google Scholar 

  19. Zuercher, A.W., Coffin, S.E., Thurnheer, M.C., Fundova, P., Cebra, J.J.: Nasal-associated lymphoid tissue is a mucosal inductive site for virus-specific humoral and cellular immune responses. J. Immunol. 168, 1796–803 (2002)

    PubMed  CAS  Google Scholar 

  20. Giudice, E.L., Campbell, J.D.: Needle-free vaccine delivery. Adv. Drug Deliv. Rev. 58, 68–89 (2006). doi:10.1016/j.addr.2005.12.003

    PubMed  CAS  Google Scholar 

  21. Bouvet, J.P., Decroix, N., Pamonsinlapatham, P.: Stimulation of local antibody production: parenteral or mucosal vaccination? Trends Immunol. 23, 209–13 (2002)

    PubMed  CAS  Google Scholar 

  22. Stevceva, L., Abimiku, A.G., Franchini, G.: Targeting the mucosa: genetically engineered vaccines and mucosal immune responses. Genes Immun. 1, 308–15 (2000). doi:10.1038/sj.gene.6363680

    PubMed  CAS  Google Scholar 

  23. McNeela, E.A., Mills, K.H.: Manipulating the immune system: humoral versus cell-mediated immunity. Adv. Drug Deliv. Rev. 51, 43–54 (2001)

    PubMed  CAS  Google Scholar 

  24. Moyle, P.M., McGeary, R.P., Blanchfield, J.T., Toth, I.: Mucosal immunisation: adjuvants and delivery systems. Curr. Drug Deliv. 1, 385–96 (2004)

    PubMed  CAS  Google Scholar 

  25. Valente, A.X., Langer, R., Stone, H.A., Edwards, D.A.: Recent advances in the development of an inhaled insulin product. BioDrugs 17, 9–17 (2003)

    PubMed  CAS  Google Scholar 

  26. Bosquillon, C., Preat, V., Vanbever, R.: Pulmonary delivery of growth hormone using dry powders and visualization of its local fate in rats. J. Control. Release 96, 233–44 (2004). doi:10.1016/j.jconrel.2004.01.027

    PubMed  CAS  Google Scholar 

  27. Huang, J., et al.: A novel dry powder influenza vaccine and intranasal delivery technology: induction of systemic and mucosal immune responses in rats. Vaccine 23, 794–801 (2004). doi:10.1016/j.vaccine.2004.06.049

    PubMed  CAS  Google Scholar 

  28. LiCalsi, C., Christensen, T., Bennett, J.V., Phillips, E., Witham, C.: Dry powder inhalation as a potential delivery method for vaccines. Vaccine 17, 1796–803 (1999)

    PubMed  CAS  Google Scholar 

  29. Smith, D.J., Bot, S., Dellamary, L., Bot, A.: Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus. Vaccine 21, 2805–12 (2003)

    PubMed  CAS  Google Scholar 

  30. LiCalsi, C., et al.: A powder formulation of measles vaccine for aerosol delivery. Vaccine 19, 2629–36 (2001)

    PubMed  CAS  Google Scholar 

  31. Amorij, J.P., et al.: Pulmonary delivery of an inulin-stabilized influenza subunit vaccine prepared by spray-freeze drying induces systemic, mucosal humoral as well as cell-mediated immune responses in BALB/c mice. Vaccine 25, 8707–17 (2007). doi:10.1016/j.vaccine.2007.10.035

    PubMed  CAS  Google Scholar 

  32. Wee, J.L., et al.: Pulmonary delivery of ISCOMATRIX influenza vaccine induces both systemic and mucosal immunity with antigen dose sparing. Mucosal Immunol. 1, 489–96 (2008). doi:10.1038/mi.2008.59

    PubMed  CAS  Google Scholar 

  33. Weers, J.G., Tarara, T.E., Clark, A.R.: Design of fine particles for pulmonary drug delivery. Expert Opin. Drug Deliv. 4, 297–313 (2007). doi:10.1517/17425247.4.3.297

    PubMed  CAS  Google Scholar 

  34. Sanders, M.T., Deliyannis, G., Pearse, M.J., McNamara, M.K., Brown, L.E.: Single dose intranasal immunization with ISCOMATRIX vaccines to elicit antibody-mediated clearance of influenza virus requires delivery to the lower respiratory tract. Vaccine 27, 2475–82 (2009). doi:10.1016/j.vaccine.2009.02.054

    PubMed  CAS  Google Scholar 

  35. Vujanic, A., et al.: Combined mucosal and systemic immunity following pulmonary delivery of ISCOMATRIX adjuvanted recombinant antigens. Vaccine 28, 2593–7 (2010). doi:10.1016/j.vaccine.2010.01.018

    PubMed  CAS  Google Scholar 

  36. Bivas-Benita, M., et al.: Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine 22, 1609–15 (2004). doi:10.1016/j.vaccine.2003.09.044

    PubMed  CAS  Google Scholar 

  37. Wang, C., et al.: Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J. 11, 139–47 (2009). doi:10.1208/s12248-009-9089-0

    PubMed  CAS  Google Scholar 

  38. Minne, A., et al.: The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response. Immunology 122, 316–25 (2007). doi:10.1111/j.1365-2567.2007.02641.x

    PubMed  CAS  Google Scholar 

  39. Heyder, J.: Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 1, 315–20 (2004). doi:10.1513/pats.200409-046TA

    PubMed  CAS  Google Scholar 

  40. Rogueda, P.G., Traini, D.: The nanoscale in pulmonary delivery. Part 1: deposition, fate, toxicology and effects. Expert Opin. Drug Deliv. 4, 595–606 (2007). doi:10.1517/17425247.4.6.595

    PubMed  CAS  Google Scholar 

  41. Hinds, W.C.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd edn. Wiley, New York (1999)

    Google Scholar 

  42. Watts, A.B., Williams, R.O., 3rd: Chapter 15: Nanoparticles for Pulmonary Delivery. In: Smyth, H.D., Hickey, A.J. (eds.) Controlled Pulmonary Drug Delivery, Springer, New York (2011) p 335

    Google Scholar 

  43. Byron, P.R.: Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J. Pharm. Sci. 75, 433–8 (1986)

    PubMed  CAS  Google Scholar 

  44. Yang, W., Peters, J.I., Williams III, R.O.: Inhaled nanoparticles – a current review. Int. J. Pharm. 356, 239–47 (2008). doi:10.1016/j.ijpharm.2008.02.011

    PubMed  CAS  Google Scholar 

  45. Kurts, C., Robinson, B.W., Knolle, P.A.: Cross-priming in health and disease. Nat. Rev. Immunol. 10, 403–14 (2010). doi:10.1038/nri2780

    PubMed  CAS  Google Scholar 

  46. Shen, H., et al.: Enhanced and prolonged cross-presentation following endosomal escape of exogenous antigens encapsulated in biodegradable nanoparticles. Immunology 117, 78–88 (2006). doi:10.1111/j.1365-2567.2005.02268.x

    PubMed  CAS  Google Scholar 

  47. Ostrander, K.D., Bosch, H.W., Bondanza, D.M.: An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization. Eur. J. Pharm. Biopharm. 48, 207–15 (1999)

    PubMed  CAS  Google Scholar 

  48. Wiedmann, T.S., DeCastro, L., Wood, R.W.: Nebulization of NanoCrystals: production of a respirable solid-in-liquid-in-air colloidal dispersion. Pharm. Res. 14, 112–6 (1997)

    PubMed  CAS  Google Scholar 

  49. Dailey, L.A., et al.: Nebulization of biodegradable nanoparticles: impact of nebulizer technology and nanoparticle characteristics on aerosol features. J. Control. Release 86, 131–44 (2003)

    PubMed  CAS  Google Scholar 

  50. Mahler, H.C., Muller, R., Friess, W., Delille, A., Matheus, S.: Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur. J. Pharm. Biopharm. 59, 407–17 (2005). doi:10.1016/j.ejpb.2004.12.004

    PubMed  CAS  Google Scholar 

  51. Packhaeuser, C.B., et al.: Stabilization of aerosolizable nano-carriers by freeze-drying. Pharm. Res. 26, 129–38 (2009). doi:10.1007/s11095-008-9714-0

    PubMed  CAS  Google Scholar 

  52. Schule, S., Schulz-Fademrecht, T., Garidel, P., Bechtold-Peters, K., Frieb, W.: Stabilization of IgG1 in spray-dried powders for inhalation. Eur. J. Pharm. Biopharm. 69, 793–807 (2008). doi:10.1016/j.ejpb.2008.02.010

    PubMed  CAS  Google Scholar 

  53. Geeraedts, F., et al.: Preservation of the immunogenicity of dry-powder influenza H5N1 whole inactivated virus vaccine at elevated storage temperatures. AAPS J. 12, 215–22 (2010). doi:10.1208/s12248-010-9179-z

    PubMed  CAS  Google Scholar 

  54. Maury, M., Murphy, K., Kumar, S., Mauerer, A., Lee, G.: Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. Eur. J. Pharm. Biopharm. 59, 251–61 (2005). doi:10.1016/j.ejpb.2004.07.010

    PubMed  CAS  Google Scholar 

  55. Ohtake, S., et al.: Heat-stable measles vaccine produced by spray drying. Vaccine 28, 1275–84 (2010). doi:10.1016/j.vaccine.2009.11.024

    PubMed  CAS  Google Scholar 

  56. Saluja, V., et al.: A comparison between spray drying and spray freeze drying to produce an influenza subunit vaccine powder for inhalation. J. Control. Release 144, 127–33 (2010). doi:10.1016/j.jconrel.2010.02.025

    PubMed  CAS  Google Scholar 

  57. Garcia-Contreras, L., et al.: Immunization by a bacterial aerosol. Proc. Natl. Acad. Sci. U. S. A. 105, 4656–60 (2008). doi:10.1073/pnas.0800043105

    PubMed  CAS  Google Scholar 

  58. Thomas, C., Gupta, V., Ahsan, F.: Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm. Res. 27, 905–19 (2010). doi:10.1007/s11095-010-0094-x

    PubMed  CAS  Google Scholar 

  59. Sham, J.O., Zhang, Y., Finlay, W.H., Roa, W.H., Lobenberg, R.: Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 269, 457–67 (2004)

    PubMed  CAS  Google Scholar 

  60. Grenha, A., Remunan-Lopez, C., Carvalho, E.L., Seijo, B.: Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur. J. Pharm. Biopharm. 69, 83–93 (2008). doi:10.1016/j.ejpb.2007.10.017

    PubMed  CAS  Google Scholar 

  61. Tsapis, N., Bennett, D., Jackson, B., Weitz, D.A., Edwards, D.A.: Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. U. S. A. 99, 12001–5 (2002). doi:10.1073/pnas.182233999

    PubMed  CAS  Google Scholar 

  62. Hadinoto, K., Phanapavudhikul, P., Kewu, Z., Tan, R.B.: Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. Int. J. Pharm. 333, 187–98 (2007). doi:10.1016/j.ijpharm.2006.10.009

    PubMed  CAS  Google Scholar 

  63. Hu, T., Chiou, H., Chan, H.K., Chen, J.F., Yun, J.: Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation. J. Pharm. Sci. 97, 944–9 (2008)

    PubMed  CAS  Google Scholar 

  64. McConville, J.T., et al.: Targeted high lung concentrations of itraconazole using nebulized dispersions in a murine model. Pharm. Res. 23, 901–11 (2006). doi:10.1007/s11095-006-9904-6

    PubMed  CAS  Google Scholar 

  65. Plumley, C., et al.: Nifedipine nanoparticle agglomeration as a dry powder aerosol formulation strategy. Int. J. Pharm. 369, 136–43 (2009). doi:10.1016/j.ijpharm.2008.10.016

    PubMed  CAS  Google Scholar 

  66. Richardson, P.C., Boss, A.H.: Technosphere insulin technology. J. Diabetes Sci. Technol. 9(Suppl 1), S65–72 (2007). doi:10.1089/dia.2007.0212

    CAS  Google Scholar 

  67. Katherine, K., Kunn, H.: Aqueous re-dispersibility characterization of spray-dried hollow spherical silica nano-aggregates. Powder Technol. 198, 354–63 (2010)

    Google Scholar 

  68. Nair, L.S., Laurencin, C.T.: Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv. Biochem. Eng. Biotechnol. 102, 47–90 (2006)

    PubMed  CAS  Google Scholar 

  69. Langer, R.: New methods of drug delivery. Science 249, 1527–33 (1990)

    PubMed  CAS  Google Scholar 

  70. Gaspar, M.M., Bakowsky, U., Ehrhardt, C.: Inhaled liposomes – current strategies and future challenges. J. Biomed. Nanotechnol. 4, 1–13 (2008)

    Google Scholar 

  71. Henderson, A., Propst, K., Kedl, R., Dow, S.: ucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 29, 5304–12 (2011). doi:10.1016/j.vaccine.2011.05.009

    PubMed  CAS  Google Scholar 

  72. Videira, M.A., et al.: Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target. 10, 607–13 (2002). doi:10.1080/1061186021000054933

    PubMed  CAS  Google Scholar 

  73. Chono, S., Tanino, T., Seki, T., Morimoto, K.: Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. J. Drug Target. 14, 557–66 (2006). doi:10.1080/10611860600834375

    PubMed  CAS  Google Scholar 

  74. Chono, S., Tanino, T., Seki, T., Morimoto, K.: Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J. Pharm. Pharmacol. 59, 75–80 (2007). doi:10.1211/jpp.59.1.0010

    PubMed  CAS  Google Scholar 

  75. Vyas, S.P., Quraishi, S., Gupta, S., Jaganathan, K.S.: Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int. J. Pharm. 296, 12–25 (2005). doi:10.1016/j.ijpharm.2005.02.003

    PubMed  CAS  Google Scholar 

  76. Nassimi, M., et al.: Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal. Toxicol. 21(Suppl 1), 104–9 (2009). doi:10.1080/08958370903005769

    PubMed  CAS  Google Scholar 

  77. Liu, J., et al.: Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 356, 333–44 (2008). doi:10.1016/j.ijpharm.2008.01.008

    PubMed  CAS  Google Scholar 

  78. Rimmelzwaan, G.F., Osterhaus, A.D.: A novel generation of viral vaccines based on the ISCOM matrix. Pharm. Biotechnol. 6, 543–58 (1995)

    PubMed  CAS  Google Scholar 

  79. Morein, B.: Iscom – an immunostimulating complex. Arzneimittelforschung 37, 1418 (1987)

    PubMed  CAS  Google Scholar 

  80. Morein, B., Sundquist, B., Hoglund, S., Dalsgaard, K., Osterhaus, A.: Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308, 457–60 (1984)

    PubMed  CAS  Google Scholar 

  81. Barr, I.G., Mitchell, G.F.: ISCOMs (immunostimulating complexes): the first decade. Immunol. Cell Biol. 74, 8–25 (1996). doi:10.1038/icb.1996.2

    PubMed  CAS  Google Scholar 

  82. Sjolander, A., Cox, J.C., Barr, I.G.: ISCOMs: an adjuvant with multiple functions. J. Leukoc. Biol. 64, 713–23 (1998)

    PubMed  CAS  Google Scholar 

  83. Khatri, K., Goyal, A.K., Gupta, P.N., Mishra, N., Vyas, S.P.: Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm. 354, 235–41 (2008). doi:10.1016/j.ijpharm.2007.11.027

    PubMed  CAS  Google Scholar 

  84. Marcinkiewicz, J., Polewska, A., Knapczyk, J.: Immunoadjuvant properties of chitosan. Arch. Immunol. Ther. Exp. (Warsz.) 39(127–132) (1991)

    Google Scholar 

  85. Wright, I.K., Higginbotham, A., Baker, S.M., Donnelly, T.D.: Generation of nanoparticles of controlled size using ultrasonic piezoelectric oscillators in solution. ACS Appl. Mater. Interfaces 2, 2360–4 (2010). doi:10.1021/am100375w

    PubMed  CAS  Google Scholar 

  86. Hagenaars, N., et al.: Physicochemical and immunological characterization of N, N, N-trimethyl chitosan-coated whole inactivated influenza virus vaccine for intranasal administration. Pharm. Res. 26, 1353–64 (2009). doi:10.1007/s11095-009-9845-y

    PubMed  CAS  Google Scholar 

  87. Jain, A., Gupta, Y., Jain, S.K.: Perspectives of biodegradable natural polysaccharides for site-specific drug delivery to the colon. J. Pharm. Pharm. Sci. 10, 86–128 (2007)

    PubMed  CAS  Google Scholar 

  88. Ahmad, Z., Khuller, G.K.: Alginate-based sustained release drug delivery systems for tuberculosis. Expert Opin. Drug Deliv. 5, 1323–34 (2008). doi:10.1517/17425240802600662

    PubMed  CAS  Google Scholar 

  89. Rouse, J.J., Whateley, T.L., Thomas, M., Eccleston, G.M.: Controlled drug delivery to the lung: Influence of hyaluronic acid solution conformation on its adsorption to hydrophobic drug particles. Int. J. Pharm. 330, 175–182 (2007). doi:10.1016/j.ijpharm.2006.11.066

    PubMed  CAS  Google Scholar 

  90. Fraser, J.R., Laurent, T.C., Laurent, U.B.: Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33 (1997)

    PubMed  CAS  Google Scholar 

  91. Liao, Y.H., Jones, S.A., Forbes, B., Martin, G.P., Brown, M.B.: Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv. 12, 327–42 (2005). doi:10.1080/10717540590952555

    PubMed  CAS  Google Scholar 

  92. Hwang, S.M., Kim, D.D., Chung, S.J., Shim, C.K.: Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J. Control. Release 129, 100–6 (2008). doi:10.1016/j.jconrel.2008.04.009

    PubMed  CAS  Google Scholar 

  93. Surendrakumar, K., Martyn, G.P., Hodgers, E.C., Jansen, M., Blair, J.A.: Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs. J. Control. Release 91, 385–94 (2003)

    PubMed  CAS  Google Scholar 

  94. Morimoto, K., Metsugi, K., Katsumata, H., Iwanaga, K., Kakemi, M.: Effects of low-viscosity sodium hyaluronate preparation on the pulmonary absorption of rh-insulin in rats. Drug Dev. Ind. Pharm. 27, 365–71 (2001). doi:10.1081/DDC-100103737

    PubMed  CAS  Google Scholar 

  95. Kumar, A., et al.: Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine 3, 132–7 (2007). doi:10.1016/j.nano.2007.03.001

    PubMed  CAS  Google Scholar 

  96. Lee, E.S., Kwon, M.J.: Protein release behavior from porous microparticle with lysozyme/hyaluronate ionic complex. Colloids Surf. B Biointerfaces 55, 125–30 (2007). doi:10.1016/j.colsurfb.2006.11.024

    PubMed  CAS  Google Scholar 

  97. Li, H.Y., Song, X., Seville, P.C.: The use of sodium carboxymethylcellulose in the preparation of spray-dried proteins for pulmonary drug delivery. Eur. J. Pharm. Sci. 40, 56–61 (2010). doi:10.1016/j.ejps.2010.02.007

    PubMed  CAS  Google Scholar 

  98. Li, H.Y., Seville, P.C.: Novel pMDI formulations for pulmonary delivery of proteins. Int. J. Pharm. 385, 73–8 (2010). doi:10.1016/j.ijpharm.2009.10.032

    PubMed  CAS  Google Scholar 

  99. Dailey, L.A., et al.: Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters. DEAPA-PVAL-g-PLGA. Pharm. Res. 20, 2011–20 (2003)

    PubMed  CAS  Google Scholar 

  100. Ungaro, F., et al.: Insulin-loaded PLGA/cyclodextrin large porous particles with improved aerosolization properties: in vivo deposition and hypoglycaemic activity after delivery to rat lungs. J. Control. Release 135, 25–34 (2009). doi:10.1016/j.jconrel.2008.12.011

    PubMed  CAS  Google Scholar 

  101. Jalalipour, M., Najafabadi, A.R., Gilani, K., Esmaily, H., Tajerzadeh, H.: Effect of dimethyl-beta-cyclodextrin concentrations on the pulmonary delivery of recombinant human growth hormone dry powder in rats. J. Pharm. Sci. 97, 5176–85 (2008). doi:10.1002/jps.21353

    PubMed  CAS  Google Scholar 

  102. Krashias, G., et al.: Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer. Vaccine 28, 2482–9 (2010). doi:10.1016/j.vaccine.2010.01.046

    PubMed  CAS  Google Scholar 

  103. Robert, E.: Chapter 1: An Overview of Adjuvant Use. In: O’Hagan, D.T. (ed.). Vaccine Adjuvants: Preparation Methods and Research Protocols. Humana Press, Totowa (2000) p 5

    Google Scholar 

  104. Singh, R.P., Pandey, J.K., Rutot, D., Degee, P., Dubois, P.: Biodegradation of poly(epsilon-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydr. Res. 338, 1759–69 (2003)

    PubMed  CAS  Google Scholar 

  105. Khatiwala, V., Shekhar, N., Aggarwal, S., Mandal, U.: Biodegradation of Poly(ε-caprolactone) (PCL) Film by Alcaligenes faecalis. J Polym Environ 16, 61–7 (2008). doi:10.1007/s10924-008-0104-9

    CAS  Google Scholar 

  106. Balmayor, E.R., Tuzlakoglu, K., Azevedo, H.S., Reis, R.L.: Preparation and characterization of starch-poly-epsilon-caprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater. 5, 1035–45 (2009). doi:10.1016/j.actbio.2008.11.006

    PubMed  CAS  Google Scholar 

  107. Sinha, V.R., Trehan, A.: Formulation, characterization, and evaluation of ketorolac tromethamine-loaded biodegradable microspheres. Drug Deliv. 12, 133–9 (2005)

    PubMed  CAS  Google Scholar 

  108. Baras, B., Benoit, M.A., Gillard, J.: Influence of various technological parameters on the preparation of spray-dried poly(epsilon-caprolactone) microparticles containing a model antigen. J. Microencapsul. 17, 485–98 (2000). doi:10.1080/026520400405732

    PubMed  CAS  Google Scholar 

  109. Zalfen, A.M., et al.: Controlled release of drugs from multi-component biomaterials. Acta Biomater. 4, 1788–96 (2008). doi:10.1016/j.actbio.2008.05.021

    PubMed  CAS  Google Scholar 

  110. Harush-Frenkel, O., et al.: A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol. Appl. Pharmacol. 246, 83–90 (2010). doi:10.1016/j.taap.2010.04.011

    PubMed  CAS  Google Scholar 

  111. Muttil, P., et al.: Inhalable microparticles containing large payload of anti-tuberculosis drugs. Eur. J. Pharm. Sci. 32, 140–50 (2007). doi:10.1016/j.ejps.2007.06.006

    PubMed  CAS  Google Scholar 

  112. Ohashi, K., Kabasawa, T., Ozeki, T.: One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J. Control. Release 135, 19–24 (2009). doi:10.1016/j.jconrel.2008.11.027

    PubMed  CAS  Google Scholar 

  113. Kaye, R.S., Purewal, T.S., Alpar, H.O.: Simultaneously manufactured nano-in-micro (SIMANIM) particles for dry-powder modified-release delivery of antibodies. J. Pharm. Sci. 98, 4055–68 (2009). doi:10.1002/jps.21673

    PubMed  CAS  Google Scholar 

  114. Yamamoto, H., Kuno, Y., Sugimoto, S., Takeuchi, H., Kawashima, Y.: Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions. J. Control. Release 102, 373–81 (2005). doi:10.1016/j.jconrel.2004.10.010

    PubMed  CAS  Google Scholar 

  115. Canete, M., et al.: The endocytic penetration mechanism of iron oxide magnetic nanoparticles with positively charged cover: a morphological approach. Int. J. Mol. Med. 26, 533–9 (2010)

    PubMed  Google Scholar 

  116. Hasenpusch, G., et al.: Magnetized aerosols comprising superparamagnetic iron oxide nanoparticles improve targeted drug and gene delivery to the lung. Pharm. Res. 29, 1308–18 (2012). doi:10.1007/s11095-012-0682-z

    PubMed  CAS  Google Scholar 

  117. Naqvi, S., et al.: Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomed. 5, 983–9 (2010). doi:10.2147/IJN.S13244

    CAS  Google Scholar 

  118. Uboldi, C., et al.: Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Part. Fibre Toxicol. 6, 18 (2009). doi:10.1186/1743-8977-6-18

    PubMed  Google Scholar 

  119. Sadauskas, E., et al.: Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem. Cent. J. 3, 16 (2009). doi:10.1186/1752-153X-3-16

    PubMed  Google Scholar 

  120. Sayes, C.M., Reed, K.L., Warheit, D.B.: Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol. Sci. 97, 163–80 (2007). doi:10.1093/toxsci/kfm018

    PubMed  CAS  Google Scholar 

  121. DiMatteo, M., Antonini, J.M., Van Dyke, K., Reasor, M.J.: Characteristics of the acute-phase pulmonary response to silica in rats. J. Toxicol. Environ. Health A 47, 93–108 (1996). doi:10.1080/009841096161951

    CAS  Google Scholar 

  122. Balas, F., Manzano, M., Horcajada, P., Vallet-Regi, M.: Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc. 128, 8116–7 (2006). doi:10.1021/ja062286z

    PubMed  CAS  Google Scholar 

  123. Lai, C.Y., et al.: A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451–9 (2003). doi:10.1021/ja028650l

    PubMed  CAS  Google Scholar 

  124. Kaur, G., Rath, G., Heer, H., Goyal, A.K.: Optimization of protocell of silica nanoparticles using 3(2) factorial designs. AAPS Pharm. Sci. Tech. 13, 167–73 (2012). doi:10.1208/s12249-011-9741-8

    CAS  Google Scholar 

Download references

Acknowledgement

Author Dr. Amit K. Goyal is thankful to the Department of Biotechnology (DBT), New Delhi, India, for providing financial assistance to carry out research on the development of novel nanocarriers for pulmonary vaccine against tuberculosis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit K. Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Goyal, A.K., Rath, G., Malik, B. (2014). Emerging Nanotechnology Approaches for Pulmonary Delivery of Vaccines. In: Giese, M. (eds) Molecular Vaccines. Springer, Cham. https://doi.org/10.1007/978-3-319-00978-0_11

Download citation

Publish with us

Policies and ethics