Generalized Constraint Design of Linear-Phase FIR Digital Filters

  • Norbert Henzel
  • Jacek M. Leski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 226)

Abstract

We consider the design of digital finite-impulse response (FIR) filters satisfying constraints on the amplitude response. Constrained FIR filter design with frequency-domain linear constraints on the amplitude response usually uses the least-squares or the Chebyshev error criterion, which can be generally reformulated as quadratic programming (QP) problem. This paper presents an novel algorithm for the design of constrained low-pass FIR filters according to a variously defined error. This approach does not require the transition bands specification, is characterized by rapid convergence and is suitable for high order filter design.

Keywords

Biomedical Signal Processing Digital Filter Design FIR Filters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parks, T.W., Burrus, C.S.: Digital Filter Design. Wiley, New York (1987)MATHGoogle Scholar
  2. 2.
    Adams, J.W.: FIR Digital Filters with Least-Squares Stopbands Subject to Peak-Gain Constraints. IEEE Transactions on Circuits and Systems 39, 376–388 (1991)CrossRefGoogle Scholar
  3. 3.
    Adams, J.W., Sullivan, J.L.: Peak-constrained least squares optimization. IEEE Transactions on Signal Processing 46, 306–321 (1998)CrossRefGoogle Scholar
  4. 4.
    Burrus, C.S., Barreto, A.: Least p-power error design of filters. In: Proc. IEEE Int. Symp. Circuits. Syst (ISCAS), vol. 1, pp. 545–548 (1992)Google Scholar
  5. 5.
    Burrus, C.S., Soewito, A.W., Gopinath, R.A.: Least squared error FIR filter design with transition bands. IEEE Trans. Signal Process. 40, 1327–1340 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Lang, M., Selesnick, I.W., Burrus, C.S.: Constrained LS design of 2D FIR filters. IEEE Transactions on Signal Processing 44, 1234–1241 (1996)CrossRefGoogle Scholar
  7. 7.
    Leski, J., Henzel, N.: Generalized Ordered Linear Regression with Regularization. Bull. Pol. Ac.: Tech. (in print)Google Scholar
  8. 8.
    McClellan, J., Parks, T.: A united approach to the design of optimum FIR linear-phase digital filters. IEEE Transactions on Circuits and Systems 20, 679–701 (1973)Google Scholar
  9. 9.
    McClellan, J., Parks, T., Rabiner, L.: A computer program for designing optimum FIR linear phase digital filters. IEEE Transactions on Audio and Electroacoustics 21, 506–526 (1973)CrossRefGoogle Scholar
  10. 10.
    McClellan, J., Parks, T.: A unified approach to the design of optimum FIR linear-phase digital filter. IEEE Trans. Circuit Theory 20, 697–701 (1973)Google Scholar
  11. 11.
    Parks, T., McClellan, J.: A program for the design of linear phase finite impulse response digital filters. IEEE Transactions on Audio and Electroacoustics 20, 195–199 (1972)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rabiner, L.R., McClellan, J.H., Parks, T.W.: FIR digital filter design techniques using weighted Chebyshev approximations. Proc. IEEE 63, 595–610 (1975)CrossRefGoogle Scholar
  13. 13.
    Selesnick, I.W., Lang, M., Burrus, C.S.: Constrained least square design of FIR filters without specified transition bands. IEEE Transactions on Signal Processing 44, 1879–1892 (1996)CrossRefGoogle Scholar
  14. 14.
    Selesnick, I.W., Lang, M., Burrus, C.S.: A modified algorithm for constrained least square design of multiband FIR filters without specified transition bands. IEEE Transactions on Signal Processing 46, 497–501 (1998)CrossRefGoogle Scholar
  15. 15.
    Tufts, D.W., Francis, J.T.: Designing digital low-pass filters- comparison of some methods and criteria. IEEE Trans. Audio Electroacoust. 18, 487–494Google Scholar
  16. 16.
    Vaidyanathan, P.P.: Efficient and multipliers design of FIR filters with very sharp cutoff via maximally flat building blocks. IEEE Trans. Circuits Syst. 32, 236–244Google Scholar
  17. 17.
    Vaidyanathan, P.P., Nguyen, T.Q.: Eigenfilters: A new approach to least squares FIR filter design and applications including Nyquist filters. IEEE Trans. Circuits Syst. 34, 11–23 (1987)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Norbert Henzel
    • 1
    • 2
  • Jacek M. Leski
    • 1
  1. 1.Institute of ElectronicsSilesian University of TechnologyGliwicePoland
  2. 2.Institute of Medical Technology and EquipmentZabrzePoland

Personalised recommendations