Skip to main content

Scalability and Fuzzy Systems: What Parallelization Can Do

  • Chapter
  • First Online:
Flexible Approaches in Data, Information and Knowledge Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 497))

  • 965 Accesses

Abstract

(Fuzzy) Database management systems aim to provide tools for data storage and ing. Based on the stored information, systems can offer analytical functionalities in order to deliver decisional database environments. In many application areas, fuzzy systems have proven to be efficient for modeling, reasoning, and predicting with imprecise information. However, expanding the frontiers of such areas or exploring new domains is often limited when facing real world data: as the space to search get bigger, more computation time and memory space are required. In this chapter, we discuss how the parallelization of fuzzy algorithms is crucial to tackle the problem of scalability and optimal performance in the context of fuzzy database mining. More precisely, we present the parallelization of fuzzy database mining algorithms on multi-core architectures of two knowledge discovery paradigms, namely fuzzy gradual pattern mining and fuzzy tree mining (for example in the case of XML databases). We also present a review of other two related problems, namely fuzzy association rule mining and fuzzy clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to OXFORD DICTIONARY. Fuzziness is deterministic uncertainty Fuzziness is concerned with the degree to which events occur rather than the likelihood of their occurrence (probability).

  2. 2.

    Detailed results are available on-line at http://www.lirmm.fr/~laurent/.

References

  1. Angryk, R.A., Petry, E.F.: Discovery of abstract knowledge from non-atomic attribute values in fuzzy relational databases. In: Bouchon-Meunier, B., Goletti, G., Yager, R.R. (eds.) Modern Information Processing: From Theory to Applications, pp. 1–11. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering frequent substructures in large unordered trees. In: Proceedings of the 6th International Conference on Discovery Science (2003)

    Google Scholar 

  3. Bahri, A., Chakhar S., Yosr, N., Bouaziz R.: Implementing imperfect information in fuzzy databases. In: International Syposium on Computational Intelligence and Intelligent Informatics, October 14–16, Hammamet, Tunisia, pp. 1–8 (2005)

    Google Scholar 

  4. Bao-wen, X., Jian-jiang, L., Yingz-hou, Z., Lei, X., Huowang, C., Hong-ji, Y.: Parallel algorithm for mining fuzzy association rules. In: Proceedings of International Conference on Cyberworlds, IEEE (2003)

    Google Scholar 

  5. Basterretxea, K., Del Campo, I.: Electronic hardware for fuzzy computing. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, pp. 1–30. Information Science Reference (2010)

    Google Scholar 

  6. Barney, B.: Introduction to Parallel Computing. Lawrence Livermore National Laboratory. http://computing.llnl.gov/tutorials/parallel_comp/#ModelsData. Cited 29 September (2012)

  7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Google Scholar 

  8. Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis of fuzzy orderings: initial steps. Mathware Soft Comput. 15, 5–20 (2008)

    Google Scholar 

  9. Bodenhofer, U.: A similarity-Based Generalization of Fuzzy Orderings. Johannes-Kepler-Universitat Linz, Linz (1999)

    Google Scholar 

  10. Bosc, P., Prade, H.: An introduction to fuzzy set and possibility theory based approaches to the treatment of uncertainty and imprecision in database management systems. In: Proceedings of UMIS’94: From Needs and Solutions, Catalina, CA, USA (1994)

    Google Scholar 

  11. Buckles, W.P., Petry, F.E.: Fuzzy representation of data for relational databases. Fuzzy Sets Syst. 7, 213–226 (1982)

    Article  MATH  Google Scholar 

  12. Chi, Y., Nijssen, J., Muntz, R., Kok, J.: Frequent subtree mining: an overview. Fundam. Inform. 66(1–2), 161–198 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Chi, Y., Xia, Y., Yang, Y., Muntz, R.: Mining closed and maximal frequent subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng. 17(2), 190–202 (2005)

    Article  Google Scholar 

  14. Cubero, J.C., Medina, J.M., Pons, O., Vila, M.A.: Extensions of resemblance relation. ELSEVIER Fuzzy Sets Syst. 86, 197–212 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. CUDA-NVIDIA: What is GPU computing? In GPU Computing Solutions. http://www.nvidia.com/object/GPU_Computing.html. Cited 29 September, (2012)

  16. CUDA Training: Cuda Parallel Programming Model Overview. In Downloadable CUDA Training Podcast. http://www.developer.nvidia.com/cuda-training, Cited 29 September (2012)

  17. Data Mining, Analytics, and Databases. In: GPU Computing Solutions. http://www.nvidia.com/object/data_mining_analytics_database.html, (2011)

  18. Delgado, M., Marin, N., Martín-Bautista, M., J., Sánchez, D., Vila, M.-A.: Mining fuzzy association rules: an overview. In: Soft Computing for Information Processing and Analysis: Studies in Fuzziness and Soft Computing, vol. 11/2005-vol. 276, Springer (2005)

    Google Scholar 

  19. Del Razo, F., Laurent, A., Poncelet, P., Teisseire, M.: Fuzzy tree mining: go soft on your nodes. In: Foundations of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems Association World Congress IFSA, pp. 145–154. Lecture Notes in Computer Science. Springer, Heidelberg (2007)

    Google Scholar 

  20. Del Razo, F., Laurent, A., Poncelet, P., Teisseire, M.: FTMnodes:Fuzzy tree mining based on partial inclusion. Elsevier, ScienceDirect Fuzzy sets and systems (2009)

    Google Scholar 

  21. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybernet. 3, 32–57 (1973)

    Google Scholar 

  22. El-Rewini, H., Abd-el-Barr, M.: Advanced Computer Architecture and Parallel Processing. Wiley, New York (2005)

    Google Scholar 

  23. Fan, J., Xie, W.: Some notes on similarity measure and proximity measure. ELSEVIER Fuzzy Sets Syst. 101, 403–412 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fang, W.-F., Lu, M., Xiao X., He, B., Luo, Q.: Frequent itemset mining on graphics processors. In: Proceedings of the Fifth International Workshop on Data Management on New Hardware (DaMoN 209), ACM (2009)

    Google Scholar 

  25. Freitas, A.A.: A survey of parallel data mining. In: 2nd International Conference on the Practical Applications of Knowledge Discovery and Data Mining, pp. 287–300 (1998)

    Google Scholar 

  26. Golkar, C.: Predictive in-database analytics bringing analytics to the data. In: Fuzzy Logix. www.fuzzyl.com/products/in-database-analytics/ (2011)

    Google Scholar 

  27. Golkar, C.: Fuzzy Logix Unveils NVIDIA GPU-Based Analytics Appliance The Tanay ZXnW Series. www.fuzzyl.com/press-releases/fuzzy-logix-uneils-nvidia-gpu-based-analytics-appliance/ (2011)

    Google Scholar 

  28. Hall, L., O., Goldgof, D., B., Canul-Reich, J., Hore, P., Cheng W., Shoemaker, L.: Scaling fuzzy models. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, pp. 31–53. Information Science Reference (2010)

    Google Scholar 

  29. Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. In: Proceedings of the IEEE, vol. 87, no. 9 (September 1999)

    Google Scholar 

  30. Hong, T.P., Lee, Y.C., Wu, M.T.: Using the master-slave parallel architecture for genetic-fuzzy data mining. In: Proceedings of IEEE International Conference on Systems, Man and, Cybernetics (2005)

    Google Scholar 

  31. Hughes, C., Hughes, T.: Professional Multicore Programming: Design and Implementation for C++ Developers. Wrox & Wiley Publishing, Inc., Hoboken (2008)

    Google Scholar 

  32. Hüllermeier, E.: Association rules for expressing gradual dependencies. In: PKDD, LNAI 2431. Springer, Berlin (2002)

    Google Scholar 

  33. Hüllermeier, E.: Fuzzy methods in machine learning and data mining: status and prospects. Fuzzy Sets Syst. 156(3), 387–407 (2005)

    Article  Google Scholar 

  34. Hüllermeier, E.: Why fuzzy set theory is useful in data mining. In Successes and New Directions in Data Mining, IGI Global (2008)

    Google Scholar 

  35. Hüllermeier, E.: Fuzzy sets in machine learning and data mining. Appl. Soft Comput. J. 11, 1493–1505 (2011)

    Article  Google Scholar 

  36. Jang, J.-S. R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall Engineering Science Mathematics, New Jersey (1997)

    Google Scholar 

  37. Jian-jiang, L., Bao-wen, X., Xiao-feng, Z., Da-zhou, K., Yan-hui, L., Jin Z.: Parallel mining and application of fuzzy association rules. In: Higher Education Press and Springer-Verlag (2006)

    Google Scholar 

  38. Julian-Iranzo, P.: A procedure for the construction of a similarity relation. In: Proceedings of IPMU’2008, Terremolinos (Malaga), pp. 489–496 (2008)

    Google Scholar 

  39. Kim, S.: A GPU based parallel hierarchical fuzzy art clustering. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), IEEE-Computational Intelligence Society (2011)

    Google Scholar 

  40. Koh, H., W., Hüllermeier, E.: Mining gradual dependencies based on fuzzy rank correlation. In: Proceedings of SMPS 2010, 5th International Conferebce on Soft Methods in Probability and Statistics. Oviedo/Mieres (Asturias), Spain, October (2010)

    Google Scholar 

  41. Laurent A., Poncelet, P., Teisseire, M.: Fuzzy data mining for the semantic web: building XML mediator schemas. In: Fuzzy Logic and the Semantic Web, pp. 249–265. Elsevier, Amsterdam (2006)

    Google Scholar 

  42. Laurent, A., Lesot, M., J., Fifqi, M., GRAANK: Exploiting rank correlations for extracting gradual itemsets. In: FQAS 2009, LNAI 5822. Springer, Berlin (2009)

    Google Scholar 

  43. Laurent, A., Negrevergne, B., Sicard, N., Termier, A.: PGP-mc: towards a multi-core parallel approach for mining gradual patterns. In: Proceedings of DASFAA (2010)

    Google Scholar 

  44. Laurent, A., Negrevergne, B., Sicard, N., Termier, A.: Efficient parallel mining of gradual patterns on multi-core processors. In: AKDM-2, Advances in Knowledge Discovery and Management, vol. 2. Springer (2010)

    Google Scholar 

  45. Lin, N., P., Chueh H., E.: Fuzzy correlation rules mining. In: Proceedings of the 6th WSEAS International conference on Applied Computer Science, Hangzhou, China (2007)

    Google Scholar 

  46. Ma, Z., M.: Advances in Fuzzy Object-Oriented Databases: Modeling and Applications. Idea Group Publishing, Hershey (2004)

    Google Scholar 

  47. Ma, Z.M., Yan, L.: A literature overview of fuzzy database models. J. Inform. Sci. Eng. 26(2), 427–441 (2008)

    Google Scholar 

  48. Molina, C., Serrano, J.M., Sánchez, D., Vila, M.A.: Measuring variation strength in gradual dependencies. In: Proceedings of the 5th EUSFLAT Conference Contents of Volume I, New Dimensions in Fuzzy Logic and Related Technologies (2007)

    Google Scholar 

  49. Molina, C., Serrano, J.M., Sánchez, D., Vila, M.A.: Mining gradual dependencies with variation strength. In: Mathware & Soft Computing, vol. 15 (2008)

    Google Scholar 

  50. Martin, T., Shen, Y.: Fuzzy association rules to summarise multiple taxonomies in large databases. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management and Analysis: Methods and Design, pp. 273–301. Information Science Reference (2010)

    Google Scholar 

  51. Murugavalli, S., Rajamani, V.: A high speed parallel fuzzy C-mean algorithm for brain tumor segmentation. BIME J. 6(1) (2006)

    Google Scholar 

  52. Ngan, S.C., Lam, T., Wong, R., Wai-Chee Fu, A.: Mining N-most interesting itemsets without support threshold by the COFI-tree. Int. J. Bus. Intell. Data Mining 1(1) (2005)

    Google Scholar 

  53. Petry, F., Bosc, P.: Fuzzy Databases: Principles and Applications. Kluwer Academic Publishers, Boston (1996)

    Google Scholar 

  54. Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases. AAAI Press/The MIT Press (1991)

    Google Scholar 

  55. Polimi, D.: A tutorial on clustering algorithms: introduction, k-means, and fuzzy c-means clustering. In: home.dei.polimi.it/matteucc/Clustering/tutorial-html/cmeans.html. Cited 29 September (2012)

    Google Scholar 

  56. Quintero, M., Laurent, A., Poncelet, P.: Fuzzy ordering for fuzzy gradual patterns. In: FQAS 2011, LNAI 7022. Springer, Berlin (2011)

    Google Scholar 

  57. Rundensteiner, E.A., Hawkes, L.W., Bandler, W.: On nearness measures in fuzzy relational data models. Int. J. Approx. Reason. 3, 267–298 (1989)

    Google Scholar 

  58. Rauber, T., Rünger, G.: Parallel Programming: for Multicore and Cluster Systems. Springer, Berlin (2010)

    Google Scholar 

  59. Shenoi, S., Melton, A.: Proximity relations in the fuzzy relational database model. ELSEVIER Fuzzy Sets Syst. (Supplement) 100, 51–62 (1999)

    Article  Google Scholar 

  60. Sicard, N., Laurent, A., Del Razo, F., Quintero Flores, P.M.: Towards multi-core parallel fuzzy tree mining. In: FUZZ-IEEE’2010, IEEE World Congress on Computational Intelligence, IEEE Computational Intelligence Society (2010)

    Google Scholar 

  61. Thac Do, T.D., Laurent, A., Termier, A.: PGLCM: efficient parallel mining of closed frequent gradual itemsets. In: Proceedings of International Conference on Data Mining (ICDM) (2010)

    Google Scholar 

  62. Terence, K., Kate, A., S., Sebastian, L., David, T.: Parallel fuzzy c-means clustering for large data sets. In: Proceedings of the 8th International Euro-Par Conference on Parallel Processing, pp. 365–374 (2002)

    Google Scholar 

  63. Timothy, J.R.: Fuzzy Logic with Engineering Applications. John Wiley & Sons, West Sussex (2010)

    Google Scholar 

  64. Touzi, A.G., Ben Hassine, A.B.: New architecture of fuzzy database management systems. Int. Arab J. Inform. Technol. 6(3), 213–220 (2009)

    Google Scholar 

  65. Van der Pas, R.: An overview of OpenMP. In: OpenMP the OpenMP API specification for parallel programming. http://openmp.org/wp/resources/#Tutorials (2011)

  66. Van der Pas, R.: Basic concepts in parallelization. In OpenMP the OpenMP API specification for parallel programming. http://openmp.org/wp/resources/#Tutorials. Cited 29 September (2011)

  67. Wen, C.H., Chen Y.L.: Mining fuzzy association rules from uncertain data. Knowl. Inform. Syst. 23(2), Springer (2010)

    Google Scholar 

  68. Yang, M.-S.: A survey of fuzzy clustering. Mathl. Comput. Modeling 18(11), 1–16 (1993)

    Article  MATH  Google Scholar 

  69. Yang, C.-T., Huang, C.-L., Lin C.-F.: Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters. Computer Physics Communications, ELSEVIER, Volume (182), pp. 266–269 (2011)

    Google Scholar 

  70. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. ELSEVIER 3(2), 177–200 (1971)

    Google Scholar 

  71. Zadeh, L.A., Hirota, K., Klir, G.J., Sanchez, E., Wang, P.-Z., Yager, R.R.: Advances in Fuzzy Systems: Applications and Theory. World Scientific, Singapore (2011)

    Google Scholar 

  72. Zaki, M.J.: Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Trans. Knowl. Data Eng. 17(8), 1021–1035 (2005)

    Google Scholar 

Download references

Acknowledgments

This work was realized with the support of HPC@LR, a Center of Competence in High-Performance Computing from the Languedoc-Roussillon region, funded by the Languedoc-Roussillon region, the Europe and the Universit Montpellier 2 Sciences et Techniques. The HPC@LR Center is equipped with an IBM hybrid Supercomputer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malaquias Q. Flores .

Editor information

Editors and Affiliations

Appendix 1: Results of Parallel Gradual Pattern Mining

Appendix 1: Results of Parallel Gradual Pattern Mining

Graphic representation of the Speedup obtained in the experimental work with the parallel fuzzyGPM algorithm (Figs. 10, 11, 12, 13, 14, 15).

Fig. 10
figure 10

Threads versus elapsed time with a database of \(500\times 50\) and \(\mathrm{minSupp} =.30\) and .35, using uncompressed binary matrices of concordance degrees

Fig. 11
figure 11

Speedup with a database of \(500\times 50\) and minSupp = .30 and .35, using uncompressed binary matrices of concordance degrees

Fig. 12
figure 12

Threads versus elapsed time with a database of \(500\times 100\) and minSupp = .375 and .38, using uncompressed binary matrices of concordance degrees

Fig. 13
figure 13

Speedup with a database of \(500\times 100\) and minSupp = .375 and .38, using uncompressed binary matrices of concordance degrees

Fig. 14
figure 14

Threads versus elapsed time with a database of \(500\times 100\) and minSupp = .375 and .38, using compressed matrices of concordance degrees

Fig. 15
figure 15

Speedup with a database of \(500\times 100\) and minSupp = .375 and .38, using compressed matrices of concordance degrees

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Q. Flores, M., Del Razo, F., Laurent , A., Sicard, N. (2014). Scalability and Fuzzy Systems: What Parallelization Can Do. In: Pivert, O., Zadrożny, S. (eds) Flexible Approaches in Data, Information and Knowledge Management. Studies in Computational Intelligence, vol 497. Springer, Cham. https://doi.org/10.1007/978-3-319-00954-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00954-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00953-7

  • Online ISBN: 978-3-319-00954-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics