Skip to main content

On the Levi Monge-Ampére Equation

  • Chapter
  • First Online:
  • 1631 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2087))

Abstract

We are concerned with some notions of curvatures associated with pseudoconvexity and the Levi form as the classical Gauss and Mean curvatures are related to the convexity and to the Hessian matrix. In particular, given a prescribed non negative function K, the Levi Monge Ampère equation for the graph of a function \(u: {\mathbb{R}}^{2n+1} \rightarrow \mathbb{R}\) is

$$\displaystyle{\det \mathcal{L} = K(x,u){(1 + \vert Du{\vert }^{2})}^{\frac{n+1} {2} },}$$

where \(\mathcal{L}\) is the Levi form of the graph u and D u is the Euclidean gradient of u. More generally, we shall consider elementary symmetric functions of the eigenvalues of the Levi form \(\mathcal{L}\) and we shall first show that these curvature equations contain information about the geometric feature of a closed hypersurface. Then, we shall show that the curvature operators lead to a new class of second order fully nonlinear equations whose characteristic form, when computed on generalized pseudoconvex functions, is nonnegative definite with kernel of dimension one. Thus, the equations are not elliptic at any point. However, they have the following redeeming feature: the missing ellipticity direction can be recovered by suitable commutation relations. We shall use this property to study existence, uniqueness and regularity of viscosity solutions of the Dirichlet problem for graphs with prescribed Levi curvature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.D. Alexandrov, Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ. 11, 5–17 (1956)

    Google Scholar 

  2. E. Bedford, B. Gaveau, Hypersurfaces with bounded Levi form. Indiana Univ. J. 27(5), 867–873 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Bedford, B. Gaveau, Envelopes of Holomorphy of certain 2-spheres in \({\mathbb{C}}^{2}\). Am. J. Math. 105(4), 975–1009 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Bedford, W. Klingenberg, On the envelope of holomorphy of a 2-sphere in \({\mathbb{C}}^{2}\). J. Am. Math. Soc. 4(3), 623–646 (1991)

    MathSciNet  MATH  Google Scholar 

  5. A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex. Studies in Advanced Mathematics (CRC Press, Boca Raton, 1991)

    Google Scholar 

  6. G. Citti, A comparison theorem for the Levi equation. Rend. Mat. Accad. Lincei 4, 207–212 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Citti, C regularity of solutions of the Levi equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 15, 517–534 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Citti, E. Lanconelli, A. Montanari, Smoothness of Lipschitz continuous graphs with non vanishing Levi curvature. Acta Math. 188(1), 87–128 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Citti, A. Montanari, Strong solutions for the Levi curvature equation. Adv. Differ. Equat. 5(1–3), 323–342 (2000)

    MathSciNet  MATH  Google Scholar 

  10. G. Citti, A. Montanari, Analytic estimates for solutions of the Levi equation. J. Differ. Equat. 173(2), 356–389 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Citti, A. Montanari, Regularity properties of solutions of a class of elliptic-parabolic nonlinear Levi type equations. Trans. Am. Math. Soc. 354(7), 2819–2848 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Da Lio, A. Montanari, Existence and uniqueness of Lipschitz continuous graphs with prescribed Levi curvature. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(1), 1–28 (2006)

    Article  MATH  Google Scholar 

  14. A. Debiard, B. Gaveau, Problème de Dirichlet pour l’équation de Levi. Bull. Sci. Math. (2) 102(4), 369–386 (1978)

    Google Scholar 

  15. S. Dragomir, G. Tomassini, Differential Geometry and Analysis on CR Manifolds. Progress in Mathematics (Birkhaüser, Boston, 2006)

    Google Scholar 

  16. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 (Springer, New York, 1969)

    Google Scholar 

  17. C.E. Gutiérrez, The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications (Birkhaüser, Boston, 2001)

    Google Scholar 

  18. C.E. Gutiérrez, E. Lanconelli, A. Montanari, Nonsmooth hypersurfaces with smooth Levi curvature. Nonlinear Anal. TMA 76, 115–121 (2013)

    Article  MATH  Google Scholar 

  19. L. Hörmander, Notions of Convexity. Progress in Mathematics, vol. 127 (Birkhäuser, Boston, 1994)

    Google Scholar 

  20. J. Hounie, E. Lanconelli, An Alexandrov type Theorem for Reinhardt domains of \({\mathbb{C}}^{2}\). Contemp. Math. 400, 129–146 (2006)

    Article  MathSciNet  Google Scholar 

  21. J. Hounie, E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature. Forum Math. 20, 571–586 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. C.C. Hsiung, Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1954)

    MathSciNet  MATH  Google Scholar 

  23. W. Klingenberg, Real hypersurfaces in Käler manifolds. Asian J. Math. 5(1), 1–17 (2001)

    MathSciNet  MATH  Google Scholar 

  24. S. Krantz, Function Theory of Several Complex Variables (Wiley, New York, 1982)

    MATH  Google Scholar 

  25. E. Lanconelli, A. Montanari, On a Class of Fully Nonlinear PDEs from Complex Geometry. Contemporary Mathematics, vol. 594, pp. 231–242. AMS volume dedicated to Professor Patrizia Pucci on the occasion of her 60th birthday (2013), http://dx.doi.org/10.1090/conm/594/11796

  26. H. Liebmann, Eine neue eigenschaft der Kugel. (German) Gött. Nachr. 44–55 (1899)

    Google Scholar 

  27. V. Martino, A. Montanari, Local Lipschitz continuity of graphs with prescribed Levi mean curvature. NoDEA Nonlinear Differ. Equat. Appl. 14(3–4), 377–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. V. Martino, A. Montanari, Integral formulas for a class of curvature PDE’s and applications to isoperimetric inequalities and to symmetry problems. Forum Math. 22, 253–265 (2010)

    Article  MathSciNet  Google Scholar 

  29. V. Martino, A. Montanari, On the characteristic direction of real hypersurfaces in \({\mathbb{C}}^{n+1}\), and a symmetry result. Adv. Geom. 10(3), 371–377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Montanari, On the regularity of solutions of the prescribed Levi curvature equation in several complex variables. Nonlinear elliptic and parabolic equations and systems (Pisa, 2002). Comm. Appl. Nonlinear Anal. 10(2), 63–71 (2003)

    Google Scholar 

  31. A. Montanari, E. Lanconelli, Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems. J. Differ. Equat. 202, 306–331 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Montanari, F. Lascialfari, The Levi Monge-Ampère equation: smooth regularity of strictly Levi convex solutions. J. Geom. Anal. 14(2), 331–353 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Monti, D. Morbidelli, Levi umbilical surfaces in complex space. J. Reine Angew. Math. 603, 113–131 (2007)

    MathSciNet  MATH  Google Scholar 

  34. A.V. Pogorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation. Dokl. Akad. Nauk SSSR 201, 790–793 (1971) (Russian). English translation in Soviet Math. Dokl. 12, 1727–1731 (1971)

    Google Scholar 

  35. R.M. Range, Holomorphic Functions and Integral Representation Formulas in Several Complex Variables (Springer, New York, 1986)

    Book  Google Scholar 

  36. R.M. Range, WHAT IS…a pseudoconvex domain? Not. Am. Math. Soc. 59(2), 301–303 (2012)

    MathSciNet  MATH  Google Scholar 

  37. R.C. Reilly, Applications of the Hessian operator in a Riemann manifold. Indiana Univ. Math. J. 26, 459–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Serrin, A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Z. Slodkowski, G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy. J. Funct. Anal. 101, 392–407 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Slodkowski, G. Tomassini, The Levi equation in higher dimensions and relationships to the envelope of holomorphy. Am. J. Math. 116(2), 479–499 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Süss, Uber Kennzeichnungen der Kugel und Affinesphären durch Herrn K.P. Grotemeyer. Arch. Math 3, 311–313 (1952)

    Google Scholar 

  42. G. Tomassini, Geometric properties of solutions of the Levi equation. Ann. Mat. Pura Appl. (4) 152, 331–344 (1988)

    Google Scholar 

  43. N.S. Trudinger, Isoperimetric inequalities for quermassintegrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 11(4), 411–425 (1994)

    MathSciNet  MATH  Google Scholar 

  44. J.I.E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations. Indiana Univ. Math. J. 39(2), 355–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamaria Montanari .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Montanari, A. (2014). On the Levi Monge-Ampére Equation. In: Fully Nonlinear PDEs in Real and Complex Geometry and Optics. Lecture Notes in Mathematics(), vol 2087. Springer, Cham. https://doi.org/10.1007/978-3-319-00942-1_4

Download citation

Publish with us

Policies and ethics