Skip to main content

Hermite Variations for Self-similar Processes

  • Chapter
  • 1451 Accesses

Part of the book series: Probability and Its Applications ((PIA))

Abstract

Hermite variations are variants of the p-variations of stochastic processes, involving the Hermite polynomials applied to the increment of the process under analysis. This type of variations fits well into Malliavin calculus context. We discuss in this chapter the limit behavior in distribution of the Hermite variations of the fractional Brownian motion, fractional Brownian sheet and moving—average sequences. The chapter also presents Hsu-Robbins and Spitzer theorems corresponding to the limit behavior in distribution of the Hermite variations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Aazizi, K. Es-Sebaiy, Berry-Essén bounds and almost sure CLT for the quadratic variation of the bifractional Brownian motion. Preprint (2012)

    Google Scholar 

  2. A. Ayache, S. Leger, M. Pontier, Drap Brownien fractionnaire. Potential Anal. 17(1), 31–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Bourguin, C.A. Tudor, Berry-Esséen bounds for long memory moving averages via Stein’s method and Malliavin calculus. Stoch. Anal. Appl. 29(5), 881–905 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-C. Breton, I. Nourdin, Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. Electron. Commun. Probab. 13, 482–493 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.-C. Breton, On the rate of convergence in non-central asymptotics of the Hermite variations of fractional Brownian sheet. Probab. Math. Stat. 31(2), 301–311 (2011)

    MathSciNet  MATH  Google Scholar 

  6. P. Breuer, P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivar. Anal. 13, 425–441 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.L. Dobrushin, P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27–52 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Erdös, On a theorem of Hsu and Robbins. Ann. Math. Stat. 20, 286–291 (1949)

    Article  MATH  Google Scholar 

  9. P. Erdös, Remark on my paper “On a theorem of Hsu and Robbins”. Ann. Math. Stat. 21, 138 (1950)

    Article  MATH  Google Scholar 

  10. K. Es-Sebaiy, C.A. Tudor, Non-central limit theorem for the cubic variation of a class of selfsimilar stochastic processes. Theory Probab. Appl. 55(3), 1–23 (2010)

    MathSciNet  Google Scholar 

  11. L. Giraitis, D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate. Probab. Theory Relat. Fields 86, 87–104 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Granger, R. Joyeux, An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1, 15–29 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.C. Heyde, A supplement to the strong law of large numbers. J. Appl. Probab. 12, 173–175 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. K.W. Hipel, A.I. McLeod, Time Series Modeling of Water Resources and Environmental Systems (North-Holland, Amsterdam, 1994)

    Google Scholar 

  15. H.-C. Ho, T. Hsing, Limit theorems for functionals of moving averages. Ann. Probab. 25(4), 1636–1669 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.R.M. Hosking, Fractional differencing. Biometrika 68, 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Hsu, H. Robbins, Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33, 25–31 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.W. Lo, Long-term memory in stock market prices. Econometrica 59, 1279–1313 (1991)

    Article  MATH  Google Scholar 

  19. I. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus from Stein’s Method to Universality (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  20. I. Nourdin, G. Peccati, Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1–2), 75–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Nourdin, D. Nualart, C.A. Tudor, Central and non-central limit theorems for weighted power variations of fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 1055–1079 (2007)

    Article  MathSciNet  Google Scholar 

  22. I. Nourdin, A. Réveillac, Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: the critical case \(H= \frac{1}{4}\). Ann. Probab. 37(6), 2200–2230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Nualart, S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 173–193 (2005)

    Article  MathSciNet  Google Scholar 

  25. G. Peccati, C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, in Séminaire de Probabilités, XXXIV (2004), pp. 247–262

    Google Scholar 

  26. V. Pipiras, M. Taqqu, Regularization and integral representations of Hermite processes. Stat. Probab. Lett. 80, 2014–2023 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Réveillac, M. Stauch, C.A. Tudor, Hermite variations of the fractional Brownian sheet. Stoch. Dyn. 12(3), 1150021 (2012), 21 pp.

    Article  MathSciNet  Google Scholar 

  28. A. Spataru, Precise asymptotics in Spitzer’s law of large numbers. J. Theor. Probab. 12(3), 811–819 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Spitzer, A combinatorial lemma and its applications to probability theory. Trans. Am. Math. Soc. 82, 323–339 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Taqqu, Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 287–302 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 53–83 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. C.A. Tudor, Hsu-Robbins and Spitzer’s theorems for the variations of fractional Brownian motion. Electron. Commun. Probab. 14, 278–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. C.A. Tudor, F. Viens, Variations and estimators for the selfsimilarity order through Malliavin calculus. Ann. Probab. 6, 2093–2134 (2009)

    Article  MathSciNet  Google Scholar 

  34. C. Tudor, Some properties of the sub-fractional Brownian motion. Stochastics 79(5), 431–448 (2007)

    MathSciNet  MATH  Google Scholar 

  35. W.B. Wu, Unit root testing for functionals of linear processes. Econom. Theory 22(1), 1–14 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tudor, C.A. (2013). Hermite Variations for Self-similar Processes. In: Analysis of Variations for Self-similar Processes. Probability and Its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-00936-0_6

Download citation

Publish with us

Policies and ethics