Skip to main content

First and Second Order Quadratic Variations. Wavelet-Type Variations

  • Chapter
Analysis of Variations for Self-similar Processes

Part of the book series: Probability and Its Applications ((PIA))

  • 1462 Accesses

Abstract

In this chapter we study the asymptotic behavior of the quadratic variation (including standard quadratic, quadratic variation based on higher order increments or wavelet-type quadratic variations) for several self-similar processes, such as fractional Brownian motion, the Rosenblatt process, the Hermite process of general order or the solution to the linear heat equation. We prove Central or Non-Central Limit Theorems for the sequence of quadratic variations using chaos expansion into multiple Wiener-Itô integrals and Malliavin calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Aazizi, K. Es-Sebaiy, Berry-Essén bounds and almost sure CLT for the quadratic variation of the bifractional Brownian motion. Preprint (2012)

    Google Scholar 

  2. P. Abry, P. Flandrin, M.S. Taqqu, D. Veitch, Self-similarity and long-range dependence through the wavelet lens, in Long-Range Dependence: Theory and Applications, ed. by P. Doukhan, G. Oppenheim, M.S. Taqqu (Birkhäuser, Basel, 2003)

    Google Scholar 

  3. P. Abry, V. Pipiras, Wavelet-based synthesis of the Rosenblatt process. Signal Process. 86, 2326–2339 (2006)

    Article  MATH  Google Scholar 

  4. P. Abry, D. Veitch, P. Flandrin, Long-range dependence: revisiting aggregation with wavelets. J. Time Ser. Anal. 19, 253–266 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. J.M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inf. Theory 48, 991–999 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-M. Bardet, V. Billat, I. Kammoun, A new process for modeling heartbeat signals during exhaustive run with an adaptive estimator of its fractal parameters. J. Appl. Stat. 39(6), 1331–1351 (2012)

    Article  MathSciNet  Google Scholar 

  7. J.-M. Bardet, G. Lang, E. Moulines, P. Soulier, Wavelet estimator of long-range dependent processes. Stat. Inference Stoch. Process. 4, 85–99 (2000)

    Article  MathSciNet  Google Scholar 

  8. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, Power variation for Gaussian processes with stationary increments. Stoch. Process. Appl. 119, 1845–1865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, Multipower variation for Brownian semi-stationary processes. Bernoulli 17(4), 1159–1194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. O.E. Barndorff-Nielsen, J.M. Corcuera, M. Podolskij, J.H.C. Woerner, Bipower variation for Gaussian processes with stationary increments. J. Appl. Probab. 46, 132–150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Begyn, Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli 13(3), 712–753 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Beran, Statistics for Long-Memory Processes (Chapman and Hall, London, 1994)

    MATH  Google Scholar 

  13. S. Bourguin, C.A. Tudor, Cramér’s theorem for Gamma random variables. Electron. Commun. Probab. 16(1), 365–378 (2011)

    MathSciNet  MATH  Google Scholar 

  14. J.-C. Breton, I. Nourdin, Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion. Electron. Commun. Probab. 13, 482–493 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Breuer, P. Major, Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivar. Anal. 13, 425–441 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Chronopoulou, C.A. Tudor, F.G. Viens, Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes. Commun. Stoch. Anal. 5(1), 161–185 (2011)

    MathSciNet  Google Scholar 

  17. A. Chronopoulou, C.A. Tudor, F.G. Viens, Variations and Hurst index estimation for a Rosenblatt process using longer filters. Electron. J. Stat. 3, 1393–1435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Clausel, F. Roueff, M. Taqqu, C.A. Tudor, Large scale behavior of wavelet coefficients of non-linear subordinated processes with long memory. Appl. Comput. Harmon. Anal. 32(2), 223–241 (2011)

    Article  MathSciNet  Google Scholar 

  19. M. Clausel, F. Roueff, M. Taqqu, C.A. Tudor, Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes. ESAIM Probab. Stat. (2012). doi:10.1051/ps/2012026

    Google Scholar 

  20. M. Clausel, F. Roueff, M. Taqqu, C.A. Tudor, High order chaotic limits for wavelet scalogram under long-range dependence. Preprint (2012)

    Google Scholar 

  21. J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4, 199–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Cohen, X. Guyon, O. Perrin, M. Pontier, Singularity functions for fractional processes: application to the fractional Brownian sheet. Ann. Inst. Henri Poincaré Probab. Stat. 42(2), 187–205 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.A. Davydov, G.M. Martynova, Limit behavior of multiple stochastic integrals, in Statistics and Control of Random Processes (Preila, Nauka, Moskow, 1987), pp. 55–57

    Google Scholar 

  24. R.L. Dobrushin, P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 27–52 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Doukhan, G. Oppenheim, M.S. Taqqu (eds.), Theory and Applications of Long-Range Dependence (Birkhäuser, Basel, 2003)

    MATH  Google Scholar 

  26. P. Embrechts, M. Maejima, Selfsimilar Processes (Princeton University Press, Princeton, 2002)

    MATH  Google Scholar 

  27. P. Flandrin, Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. Inf. Theory 38, 910–917 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Giraitis, D. Surgailis, A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate. Probab. Theory Relat. Fields 86, 87–104 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Guyon, J. León, Convergence en loi des H-variations d’un processus gaussien stationnaire sur R. Ann. IHP 25, 265–282 (1989)

    MATH  Google Scholar 

  30. Y.Z. Hu, D. Nualart, Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab. 33(3), 948–983 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y.Z. Hu, D. Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat. Probab. Lett. 80(11–12), 1030–1038 (2011)

    MathSciNet  Google Scholar 

  32. J. Istas, G. Lang, Quadratic variations and estimation of the local Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré Probab. Stat. 33(4), 407–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Kusuoka, C.A. Tudor, Stein’s method for invariant measures of diffusions via Malliavin calculus. Stoch. Process. Appl. 122(4), 1627–1651 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Maejima, C.A. Tudor, Selfsimilar processes with stationary increments in the second Wiener chaos. Probab. Math. Stat. 32(1), 167–186 (2012)

    MathSciNet  MATH  Google Scholar 

  35. D. Marinucci, G. Peccati, Random Fields on the Sphere. Representation, Limit Theorems and Cosmological Applications. London Mathematical Society Lecture Note Series, vol. 389 (Cambridge University Press, Cambridge, 2011)

    Book  MATH  Google Scholar 

  36. E. Moulines, F. Roueff, M.S. Taqqu, On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter. J. Time Ser. Anal. 28, 155–187 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Moulines, F. Roueff, M.S. Taqqu, Central limit theorem for the log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context. Fractals 15(4), 301–313 (2008)

    Article  MathSciNet  Google Scholar 

  38. I. Nourdin, Selected Topics on Fractional Brownian Motion. Springer and Bocconi (2012)

    Book  Google Scholar 

  39. I. Nourdin, G. Peccati, Normal Approximations with Malliavin Calculus from Stein’s Method to Universality (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  40. I. Nourdin, G. Peccati, Stein’s method on Wiener chaos. Probab. Theory Relat. Fields 145(1–2), 75–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Nourdin, G. Peccati, Stein’s method and exact Berry-Esséen asymptotics for functionals of Gaussian fields. Ann. Probab. 37(6), 2200–2230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. I. Nourdin, G. Peccati, Stein’s Method Meets Malliavin Calculus: A Short Survey with New Estimates. Recent Advances in Stochastic Dynamics and Stochastic Analysis (World Scientific, Singapore, 2008)

    Google Scholar 

  43. I. Nourdin, G. Peccati, Non-central convergence of multiple integrals. Ann. Probab. 37(4), 1412–1426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Nourdin, G. Peccati, A. Réveillac, Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 45–58 (2010)

    Article  MATH  Google Scholar 

  45. I. Nourdin, F.G. Viens, Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14, 2287–2309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Nualart, Malliavin Calculus and Related Topics, 2nd edn. (Springer, New York, 2006)

    MATH  Google Scholar 

  47. D. Nualart, S. Ortiz-Latorre, Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Nualart, G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33(1), 173–193 (2005)

    Article  MathSciNet  Google Scholar 

  49. G. Peccati, M.S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams. Bocconi and Springer Series (Springer, Berlin, 2010)

    Google Scholar 

  50. G. Peccati, C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals, in Séminaire de Probabilités, XXXIV (2004), pp. 247–262

    Google Scholar 

  51. J. Pospisil, R. Tribe, Parameter estimates and exact variations for stochastic heat equations driven by space-time white noise. Stoch. Anal. Appl. 25(3), 593–611 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. P.M. Robinson, Gaussian semiparametric estimation of long range dependence. Ann. Stat. 23, 1630–1661 (1995)

    Article  MATH  Google Scholar 

  53. G. Samorodnitsky, M. Taqqu, Stable Non-Gaussian Random Variables (Chapman and Hall, London, 1994)

    Google Scholar 

  54. J. Swanson, Variations of the solution to a stochastic heat equation. Ann. Probab. 35(6), 2122–2159 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Taqqu, Weak convergence to the fractional Brownian motion and to the Rosenblatt process. Z. Wahrscheinlichkeitstheor. Verw. Geb. 31, 287–302 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheor. Verw. Geb. 50, 53–83 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Torres, C.A. Tudor, F. Viens, Quadratic variations for the fractional-colored heat equation. Preprint (2012)

    Google Scholar 

  58. C.A. Tudor, Analysis of the Rosenblatt Process. ESAIM Probability and Statistics, vol. 12, (2008), pp. 230–257

    Google Scholar 

  59. C.A. Tudor, Asymptotic Cramér’s theorem and analysis on Wiener space, in Séminaire de Probabilités XLIII. Lecture Notes in Mathematics, (2011), pp. 309–325

    Chapter  Google Scholar 

  60. C.A. Tudor, F.G. Viens, Statistical aspects of the fractional stochastic calculus. Ann. Stat. 35(3), 1183–1212 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. C.A. Tudor, F. Viens, Variations and estimators for the selfsimilarity order through Malliavin calculus. Ann. Probab. 6, 2093–2134 (2009)

    Article  MathSciNet  Google Scholar 

  62. C. Tudor, Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-fractional Brownian motion. J. Math. Anal. Appl. 375(2), 667–676 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Veitch, P. Abry, A wavelet-based joint estimator of the parameters of long-range dependence. IEEE Trans. Inf. Theory 45(3), 878–897 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tudor, C.A. (2013). First and Second Order Quadratic Variations. Wavelet-Type Variations. In: Analysis of Variations for Self-similar Processes. Probability and Its Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-00936-0_5

Download citation

Publish with us

Policies and ethics