Anomalies
Chapter
First Online:
- 433 Downloads
Abstract
Tree-level superamplitudes and the integrands of loop corrections are invariant under the Yangian of the superconformal symmetry \({\mathcal {Y}}({\mathfrak {psu}}(2,2|4)\), which is represented in momentum twistor space by the generators [1, 2].
Keywords
Momentum Twistor Tree-level Superamplitudes Super Gauge Transformations Dual Conformal Symmetry Remainder Function
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.J.M. Drummond, J.M. Henn, J. Plefka, Yangian symmetry of scattering amplitudes in N \(=\) 4 super Yang-Mills theory. JHEP 0905, 046 (2009), [arXiv:0902.2987]Google Scholar
- 2.J. Drummond, L. Ferro, Yangians, Grassmannians and T-duality. JHEP 1007, 027 (2010), [arXiv:1001.3348]Google Scholar
- 3.R. Akhoury, Mass divergences of wide angle scattering amplitudes. Phys. Rev. D19, 1250 (1979)ADSGoogle Scholar
- 4.A.H. Mueller, On the asymptotic behavior of the sudakov form-factor. Phys. Rev. D20, 2037 (1979)MathSciNetADSGoogle Scholar
- 5.J.C. Collins, Algorithm to compute corrections to the Sudakov form-factor. Phys. Rev. D22, 1478 (1980)ADSGoogle Scholar
- 6.A. Sen, Asymptotic behavior of the Sudakov form-factor in QCD. Phys. Rev. D24, 3281 (1981)ADSGoogle Scholar
- 7.G.F. Sterman, Summation of large corrections to short distance Hadronic cross-sections. Nucl. Phys. B281, 310 (1987)ADSCrossRefGoogle Scholar
- 8.J. Botts, G.F. Sterman, Hard elastic scattering in QCD: leading behavior. Nucl. Phys. B325, 62 (1989)ADSCrossRefGoogle Scholar
- 9.S. Catani, L. Trentadue, Resummation of the QCD perturbative series for hard processes. Nucl. Phys. B327, 323 (1989)ADSCrossRefGoogle Scholar
- 10.G. Korchemsky, Sudakov form-factor in QCD. Phys. Lett. B220, 629 (1989)MathSciNetADSCrossRefGoogle Scholar
- 11.G. Korchemsky, Double logarithmic asymptotics in QCD. Phys. Lett. B217, 330–334 (1989)MathSciNetADSCrossRefGoogle Scholar
- 12.L. Magnea, G.F. Sterman, Analytic continuation of the Sudakov form-factor in QCD. Phys. Rev. D42, 4222–4227 (1990)ADSGoogle Scholar
- 13.G. Korchemsky, G. Marchesini, Resummation of large infrared corrections using Wilson loops. Phys. Lett. B313, 433–440 (1993)ADSCrossRefGoogle Scholar
- 14.S. Catani, The singular behavior of QCD amplitudes at two loop order. Phys. Lett. B427, 161–171 (1998), [hep-ph/9802439]Google Scholar
- 15.G.F. Sterman, M.E. Tejeda-Yeomans, Multiloop amplitudes and resummation. Phys. Lett. B552, 48–56 (2003), [hep-ph/0210130]Google Scholar
- 16.G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008), [arXiv:0707.0243]Google Scholar
- 17.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010), [arXiv:0712.1223]Google Scholar
- 18.I. Korchemskaya, G. Korchemsky, On lightlike Wilson loops. Phys. Lett. B287, 169–175 (1992)ADSCrossRefGoogle Scholar
- 19.A. Bassetto, I. Korchemskaya, G. Korchemsky, G. Nardelli, Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge. Nucl. Phys. B408, 62–90 (1993), [hep-ph/9303314]Google Scholar
- 20.S. Ivanov, G. Korchemsky, A. Radyushkin, Infrared asymptotics of perturbative QCD: contour gauges. Yad. Fiz. 44, 230–240 (1986)Google Scholar
- 21.G. Korchemsky, G. Marchesini, Structure function for large X and renormalization of Wilson loop. Nucl. Phys. B406, 225–258 (1993), [hep-ph/9210281]Google Scholar
- 22.Z. Bern, L.J. Dixon, V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond. Phys. Rev. D72, 085001 (2005), [hep-th/0505205]Google Scholar
- 23.L.F. Alday, R. Roiban, Scattering amplitudes, Wilson loops and the String/Gauge theory correspondence. Phys. Rep. 468, 153–211 (2008), [arXiv:0807.1889]Google Scholar
- 24.G. Korchemsky, E. Sokatchev, Symmetries and analytic properties of scattering amplitudes in N \(=\) 4 SYM theory. Nucl. Phys. B832, 1–51 (2010), [arXiv:0906.1737]Google Scholar
- 25.A. Sever, P. Vieira, Symmetries of the N = 4 SYM S-matrix, arXiv:0908.2437Google Scholar
- 26.S. Caron-Huot, S. He, Jumpstarting the all-loop S-matrix of planar N \(=\) 4 super Yang-Mills. JHEP 1207, 174 (2012), [arXiv:1112.1060]Google Scholar
- 27.M. Bullimore, D. Skinner, Descent Equations for Superamplitudes, arXiv:1112.1056Google Scholar
- 28.M. Bullimore, D. Skinner, Holomorphic Linking, Loop Equations and Scattering Amplitudes in Twistor Space, arXiv:1101.1329Google Scholar
- 29.D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, Pulling the straps of polygons. JHEP 1112, 011 (2011), [arXiv:1102.0062]Google Scholar
- 30.S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N \(=\) 4 super Yang-Mills, arXiv:1105.5606 (Temporary entry)Google Scholar
- 31.A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N \(=\) 4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008), [arXiv:0707.1153]Google Scholar
- 32.L. Mason, D. Skinner, The complete planar S-matrix of N \(= \)4 SYM as a Wilson loop in Twistor space. JHEP 1012, 018 (2010), [arXiv:1009.2225]Google Scholar
- 33.R. Boels, L. Mason, D. Skinner, Supersymmetric gauge theories in Twistor space. JHEP 0702, 014 (2007), [hep-th/0604040]Google Scholar
- 34.N. Woodhouse, Real methods in Twistor theory. Class. Quant. Grav. 2, 257–291 (1985)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 35.L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever, P. Vieira, An operator product expansion for polygonal null Wilson loops. JHEP 1104, 088 (2011), [arXiv:1006.2788]Google Scholar
- 36.N. Beisert, B. Eden, M. Staudacher, Transcendentality and crossing. J. Stat. Mech. 0701, P01021 (2007), [hep-th/0610251]Google Scholar
- 37.L.F. Alday, J. Maldacena, Minimal Surfaces in AdS and the Eight-Gluon Scattering Amplitude at Strong Coupling, arXiv:0903.4707Google Scholar
- 38.L.F. Alday, D. Gaiotto, J. Maldacena, Thermodynamic bubble Ansatz. JHEP 1109, 032 (2011), [arXiv:0911.4708]Google Scholar
- 39.L.F. Alday, J. Maldacena, A. Sever, P. Vieira, Y-system for scattering amplitudes. J. Phys. A A43, 485401 (2010), [arXiv:1002.2459]Google Scholar
- 40.A. Belitsky, G. Korchemsky, E. Sokatchev, Are scattering amplitudes dual to super Wilson loops? Nucl. Phys. B855, 333–360 (2012), [arXiv:1103.3008]Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014