On-Shell Recursion
Chapter
First Online:
- 432 Downloads
Abstract
Amoungst the most efficient methods for generating tree-level scattering amplitudes in gauge theories are on-shell recursion relations, introduced in the remarkable papers [1, 2]
Keywords
Recursion Relation Momentum Twistor Loop Integrand Tree-level Superamplitudes Reference Twistor
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. 715, 499–522 (2005, hep-th/0412308)Google Scholar
- 2.R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005, hep-th/0501052)Google Scholar
- 3.S. Badger, E. Glover, V. Khoze, P. Svrcek, Recursion relations for gauge theory amplitudes with massive particles. JHEP 0507, 025 (2005, hep-th/0504159)Google Scholar
- 4.S. Badger, E. Glover, V.V. Khoze, Recursion relations for gauge theory amplitudes with massive vector bosons and fermions. JHEP 0601, 066 (2006, hep-th/0507161)Google Scholar
- 5.Z. Bern, L.J. Dixon, D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes. Phys. Rev. D71, 105013 (2005, hep-th/0501240)Google Scholar
- 6.Z. Bern, L.J. Dixon, D.A. Kosower, The last of the finite loop amplitudes in QCD. Phys. Rev. D72, 125003 (2005, hep-ph/0505055)Google Scholar
- 7.A. Brandhuber, P. Heslop, G. Travaglini, A note on dual superconformal symmetry of the N=4 super Yang-Mills S-matrix. Phys. Rev. D78, 125005 (2008, arXiv:0807.4097)Google Scholar
- 8.N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the simplest quantum field theory? JHEP. 1009, 016 (2010, arXiv:0808.1446)Google Scholar
- 9.N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot, J. Trnka, The all-loop integrand for scattering amplitudes in planar N=4 SYM. JHEP 1101, 041 (2011, arXiv:1008.2958)Google Scholar
- 10.R. H. Boels, On BCFW shifts of integrands and integrals. JHEP 1011, 113 (2010, arXiv:1008.3101)Google Scholar
- 11.H. Elvang, D.Z. Freedman, M. Kiermaier, Recursion relations, generating functions, and unitarity sums in N=4 SYM theory. JHEP 0904, 009 (2009, arXiv:0808.1720)Google Scholar
- 12.H. Elvang, D.Z. Freedman, M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory. JHEP 0906, 068 (2009, arXiv:0811.3624)Google Scholar
- 13.M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921Google Scholar
- 14.J. Drummond, J. Henn, All tree-level amplitudes in N=4 SYM. JHEP 0904, 018 (2009, arXiv:0808.2475)Google Scholar
- 15.T. Cohen, H. Elvang, M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories. JHEP 1104, 053 (2011, arXiv:1010.0257)Google Scholar
- 16.F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. JHEP 0409, 006 (2004, hep-th/0403047)Google Scholar
- 17.M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. JHEP 1012, 032 (2010, arXiv:1009.1854)Google Scholar
- 18.A. Brandhuber, B.J. Spence, G. Travaglini, One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices. Nucl. Phys. B706, 150–180 (2005, hep-th/0407214)Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014