On-Shell Recursion

  • Mathew Richard BullimoreEmail author
Part of the Springer Theses book series (Springer Theses)


Amoungst the most efficient methods for generating tree-level scattering amplitudes in gauge theories are on-shell recursion relations, introduced in the remarkable papers [1, 2]


Recursion Relation Momentum Twistor Loop Integrand Tree-level Superamplitudes Reference Twistor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. 715, 499–522 (2005, hep-th/0412308)Google Scholar
  2. 2.
    R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005, hep-th/0501052)Google Scholar
  3. 3.
    S. Badger, E. Glover, V. Khoze, P. Svrcek, Recursion relations for gauge theory amplitudes with massive particles. JHEP 0507, 025 (2005, hep-th/0504159)Google Scholar
  4. 4.
    S. Badger, E. Glover, V.V. Khoze, Recursion relations for gauge theory amplitudes with massive vector bosons and fermions. JHEP 0601, 066 (2006, hep-th/0507161)Google Scholar
  5. 5.
    Z. Bern, L.J. Dixon, D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes. Phys. Rev. D71, 105013 (2005, hep-th/0501240)Google Scholar
  6. 6.
    Z. Bern, L.J. Dixon, D.A. Kosower, The last of the finite loop amplitudes in QCD. Phys. Rev. D72, 125003 (2005, hep-ph/0505055)Google Scholar
  7. 7.
    A. Brandhuber, P. Heslop, G. Travaglini, A note on dual superconformal symmetry of the N=4 super Yang-Mills S-matrix. Phys. Rev. D78, 125005 (2008, arXiv:0807.4097)Google Scholar
  8. 8.
    N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the simplest quantum field theory? JHEP. 1009, 016 (2010, arXiv:0808.1446)Google Scholar
  9. 9.
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot, J. Trnka, The all-loop integrand for scattering amplitudes in planar N=4 SYM. JHEP 1101, 041 (2011, arXiv:1008.2958)Google Scholar
  10. 10.
    R. H. Boels, On BCFW shifts of integrands and integrals. JHEP 1011, 113 (2010, arXiv:1008.3101)Google Scholar
  11. 11.
    H. Elvang, D.Z. Freedman, M. Kiermaier, Recursion relations, generating functions, and unitarity sums in N=4 SYM theory. JHEP 0904, 009 (2009, arXiv:0808.1720)Google Scholar
  12. 12.
    H. Elvang, D.Z. Freedman, M. Kiermaier, Proof of the MHV vertex expansion for all tree amplitudes in N=4 SYM theory. JHEP 0906, 068 (2009, arXiv:0811.3624)Google Scholar
  13. 13.
    M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921Google Scholar
  14. 14.
    J. Drummond, J. Henn, All tree-level amplitudes in N=4 SYM. JHEP 0904, 018 (2009, arXiv:0808.2475)Google Scholar
  15. 15.
    T. Cohen, H. Elvang, M. Kiermaier, On-shell constructibility of tree amplitudes in general field theories. JHEP 1104, 053 (2011, arXiv:1010.0257)Google Scholar
  16. 16.
    F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. JHEP 0409, 006 (2004, hep-th/0403047)Google Scholar
  17. 17.
    M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. JHEP 1012, 032 (2010, arXiv:1009.1854)Google Scholar
  18. 18.
    A. Brandhuber, B.J. Spence, G. Travaglini, One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices. Nucl. Phys. B706, 150–180 (2005, hep-th/0407214)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematical InstituteRadcliffe Observatory QuarterOxfordUK

Personalised recommendations