Amplitudes and MHV Diagrams
Chapter
First Online:
- 441 Downloads
Abstract
Scattering amplitudes are fundamental and remarkably rich observables in quantum field theory. Scattering amplitudes in gauge theories are often much simpler than one expects from a typical Feynman diagram expansion.
Keywords
Momentum Twistor Momentum Space Wavefunction Loop Integrand Dual Superconformal Symmetry Tree-level Superamplitudes
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.S.J. Parke, T. Taylor, An amplitude for \(n\) gluon scattering. Phys. Rev. Lett. 56, 2459 (1986)ADSCrossRefGoogle Scholar
- 2.E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189–258 (2004, hep-th/0312171)Google Scholar
- 3.R. Roiban, M. Spradlin, A. Volovich, On the tree level S matrix of Yang-Mills theory. Phys. Rev. D70, 026009 (2004, hep-th/0403190)Google Scholar
- 4.R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. B715, 499–522 (2005, hep-th/0412308)Google Scholar
- 5.R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005, hep-th/0501052)Google Scholar
- 6.F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. JHEP 0409, 006 (2004, hep-th/0403047)Google Scholar
- 7.K. Risager, A direct proof of the CSW rules. JHEP 0512, 003 (2005, hep-th/0508206)Google Scholar
- 8.Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B425, 217–260 (1994, hep-ph/9403226)Google Scholar
- 9.Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B435, 59–101 (1995, hep-ph/9409265)Google Scholar
- 10.C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde, et al., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D78, 036003 (2008, arXiv:0803.4180)Google Scholar
- 11.J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998, hep-th/9711200)Google Scholar
- 12.E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998, hep-th/9802150)Google Scholar
- 13.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998, hep-th/9802109)Google Scholar
- 14.L.J. Dixon, Calculating scattering amplitudes efficiently, hep-ph/9601359Google Scholar
- 15.L.J. Dixon, Scattering amplitudes: the most perfect microscopic structures in the universe. J. Phys.A A44, 454001 (2011, arXiv:1105.0771) * Temporary entry*Google Scholar
- 16.Z. Bern, D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories. Nucl. Phys. B362, 389–448 (1991)MathSciNetADSCrossRefGoogle Scholar
- 17.A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473Google Scholar
- 18.L.F. Alday, J.M. Maldacena, Gluon scattering amplitudes at strong coupling. JHEP 0706, 064 (2007, arXiv:0705.0303)Google Scholar
- 19.G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008, arXiv:0707.0243)Google Scholar
- 20.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010, arXiv:0712.1223)Google Scholar
- 21.J. Drummond, J. Henn, V. Smirnov, E. Sokatchev, Magic identities for conformal four-point integrals. JHEP 0701, 064 (2007, hep-th/0607160)Google Scholar
- 22.Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower, V.A. Smirnov, The four-Loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory. Phys. Rev. D75, 085010 (2007, hep-th/0610248)Google Scholar
- 23.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory. Nucl. Phys. B828, 317–374 (2010, arXiv:0807.1095)Google Scholar
- 24.N. Berkovits, J. Maldacena, Fermionic T-Duality, dual superconformal symmetry, and the amplitude/Wilson loop connection. JHEP 0809, 062 (2008, arXiv:0807.3196)Google Scholar
- 25.N. Beisert, T-Duality, dual conformal symmetry and integrability for strings on AdS(5) x S**5. Fortsch. Phys. 57, 329–337 (2009, arXiv:0903.0609)Google Scholar
- 26.J.M. Drummond, J.M. Henn, J. Plefka, Yangian symmetry of scattering amplitudes in N=4 super Yang-Mills theory. JHEP 0905, 046 (2009, arXiv:0902.2987)Google Scholar
- 27.J. Drummond, L. Ferro, Yangians Grassmannians and T-duality. JHEP 1007, 027 (2010, arXiv:1001.3348)Google Scholar
- 28.L. Dolan, C.R. Nappi, E. Witten, A relation between approaches to integrability in superconformal Yang-Mills theory. JHEP 0310, 017 (2003, hep-th/0308089)Google Scholar
- 29.L. Dolan, C.R. Nappi, E. Witten, Yangian symmetry in D = 4 superconformal Yang-Mills theory, hep-th/0401243Google Scholar
- 30.N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan, A duality for the S matrix. JHEP 1003, 020 (2010, arXiv:0907.5418)Google Scholar
- 31.N. Arkani-Hamed, F. Cachazo, C. Cheung, The Grassmannian origin of dual superconformal invariance. JHEP 1003, 036. (2010, arXiv:0909.0483)Google Scholar
- 32.L. Mason, D. Skinner, Dual superconformal invariance, momentum twistors and Grassmannians. JHEP 0911, 045 (2009, arXiv:0909.0250)Google Scholar
- 33.N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot, J. Trnka, The all-loop integrand for scattering amplitudes in planar N=4 SYM. JHEP 1101, 041 (2011, arXiv:1008.2958)Google Scholar
- 34.J.M. Drummond, J.M. Henn, Simple loop integrals and amplitudes in N=4 SYM. JHEP 1105, 105 (2011, arXiv:1008.2965)Google Scholar
- 35.J. Drummond, L. Ferro, The Yangian origin of the Grassmannian integral. JHEP 1012, 010 (2010, arXiv:1002.4622)Google Scholar
- 36.M. Bullimore, D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056Google Scholar
- 37.S. Caron-Huot, S. He, Jumpstarting the all-loop S-Matrix of planar N=4 super Yang-Mills. JHEP 1207, 174 (2012, arXiv:1112.1060)Google Scholar
- 38.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Generalized unitarity for N=4 super-amplitudes, arXiv:0808.0491Google Scholar
- 39.J. Drummond, J. Henn, All tree-level amplitudes in N=4 SYM. JHEP 0904, 018 (2009, arXiv:0808.2475)Google Scholar
- 40.L. Mason, D. Skinner, Scattering amplitudes and BCFW recursion in twistor space. JHEP 1001, 064 (2010, arXiv:0903.2083)Google Scholar
- 41.L. Mason, D. Skinner, The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space. JHEP 1012, 018 (2010, arXiv:1009.2225)Google Scholar
- 42.L.F. Alday, J.M. Henn, J. Plefka, T. Schuster, Scattering into the fifth dimension of N=4 super Yang-Mills. JHEP 1001, 077 (2010, arXiv:0908.0684)Google Scholar
- 43.G. Georgiou, V.V. Khoze, Tree amplitudes in gauge theory as scalar MHV diagrams. JHEP 0405, 070 (2004, hep-th/0404072)Google Scholar
- 44.G. Georgiou, E. Glover, V.V. Khoze, Non-MHV tree amplitudes in gauge theory. JHEP 0407, 048 (2004, hep-th/0407027)Google Scholar
- 45.R. Boels, C. Schwinn, CSW rules for a massive scalar. Phys. Lett. B662, 80–86 (2008, arXiv:0712.3409)Google Scholar
- 46.R. Boels, C. Schwinn, CSW rules for massive matter legs and glue loops. Nucl. Phys. Proc. Suppl. 183, 137–142 (2008, arXiv:0805.4577)Google Scholar
- 47.A. Brandhuber, B.J. Spence, G. Travaglini, One-loop gauge theory amplitudes in N=4 super Yang-Mills from MHV vertices. Nucl. Phys. B706, 150–180 (2005, hep-th/0407214)Google Scholar
- 48.J. Bedford, A. Brandhuber, B.J. Spence, G. Travaglini, A twistor approach to one-loop amplitudes in N=1 supersymmetric Yang-Mills theory. Nucl. Phys. B706, 100–126 (2005, hep-th/0410280)Google Scholar
- 49.C. Quigley, M. Rozali, One-loop MHV amplitudes in supersymmetric gauge theories. JHEP 0501, 053 (2005, hep-th/0410278)Google Scholar
- 50.P. Mansfield, The lagrangian origin of MHV rules. JHEP 0603, 037 (2006, hep-th/0511264)Google Scholar
- 51.J.H. Ettle, T.R. Morris, Structure of the MHV-rules Lagrangian. JHEP 0608, 003 (2006, hep-th/0605121). Makes major improvements on withdrawn paper hep-th/0605024Google Scholar
- 52.R. Boels, L. Mason, D. Skinner, From twistor actions to MHV diagrams. Phys. Lett. B648, 90–96 (2007, hep-th/0702035)Google Scholar
- 53.M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. JHEP 1012, 032 (2010, arXiv:1009.1854)Google Scholar
- 54.M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921Google Scholar
- 55.A. Brandhuber, G. Travaglini, Quantum MHV diagrams, hep-th/0609011Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014