• Mathew Richard BullimoreEmail author
Part of the Springer Theses book series (Springer Theses)


Scattering amplitudes are fundamental and remarkably rich observables in quantum field theory. The single most important observation in this subject is that scattering amplitudes are often much simpler than one expects from a typical Feynman diagram expansion. Understanding the implications of this simple fact has lead to the development of new and efficient computational techniques and to the discovery of new mathematical structures in theoretical physics.


Diagram Expansion Momentum Twistor Space Null Polygonal Wilson Loops Wilson Loop Tree-level Superamplitudes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.J. Parke, T. Taylor, An amplitude for \(n\) gluon scattering. Phys. Rev. Lett. 56, 2459 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. B715, 499–522 (2005). [hep-th/0412308]Google Scholar
  3. 3.
    R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). [hep-th/0501052]Google Scholar
  4. 4.
    F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. J. High Energy Phys. 0409, 006 (2004). [hep-th/0403047]Google Scholar
  5. 5.
    K. Risager, A direct proof of the CSW rules. J. High Energy Phys. 0512, 003 (2005). [hep-th/0508206]Google Scholar
  6. 6.
    Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B425, 217–260 (1994). [hep-ph/9403226]Google Scholar
  7. 7.
    Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B435, 59–101 (1995). [hep-ph/9409265]Google Scholar
  8. 8.
    C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde et al., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D78, 036003 (2008). [arXiv:0803.4180]Google Scholar
  9. 9.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). [hep-th/9711200]Google Scholar
  10. 10.
    E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). [hep-th/9802150]Google Scholar
  11. 11.
    S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). [hep-th/9802109]Google Scholar
  12. 12.
    L.F. Alday, J.M. Maldacena, Gluon scattering amplitudes at strong coupling. J. High Energy Phys. 0706, 064 (2007). [arXiv:0705.0303]Google Scholar
  13. 13.
    G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008). [arXiv:0707.0243]Google Scholar
  14. 14.
    J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010). [arXiv:0712.1223]Google Scholar
  15. 15.
    J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, On planar gluon amplitudes/Wilson loops duality. Nucl. Phys. B795, 52–68 (2008). [arXiv:0709.2368]Google Scholar
  16. 16.
    A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N=4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008). [arXiv:0707.1153]Google Scholar
  17. 17.
    J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory. Nucl. Phys. B828, 317–374 (2010). [arXiv:0807.1095]Google Scholar
  18. 18.
    N. Berkovits, J. Maldacena, Fermionic T-Duality, dual superconformal symmetry, and the amplitude/Wilson loop connection. J. High Energy Phys. 0809, 062 (2008). [arXiv:0807.3196]Google Scholar
  19. 19.
    N. Beisert, T-Duality, dual conformal symmetry and integrability for strings on adS(5) x S**5. Fortsch. Phys. 57, 329–337 (2009). [arXiv:0903.0609]Google Scholar
  20. 20.
    R. Penrose, Twistor algebra. J. Math. Phys. 8, 345 (1967)MathSciNetADSCrossRefzbMATHGoogle Scholar
  21. 21.
    R. Penrose, M.A. MacCallum, Twistor theory: An approach to the quantization of fields and space-time. Phys. Rept. 6, 241–316 (1972)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    A.P. Hodges, S. Huggett, Twistor diagrams. Surveys High Energ. Phys. 1, 333–353 (1980)ADSCrossRefGoogle Scholar
  23. 23.
    A.P. Hodges, Twistor diagrams and massless Moller scattering. Proc. Roy. Soc. Lond. A385, 207–228 (1983)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    A.P. Hodges, Twistor diagrams and massless compton scattering. Proc. Roy. Soc. Lond. A386, 185–210 (1983)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189–258 (2004). [hep-th/0312171]Google Scholar
  26. 26.
    N. Berkovits, An alternative string theory in twistor space for N=4 superYang-Mills. Phys. Rev. Lett. 93, 011601 (2004). [hep-th/0402045]Google Scholar
  27. 27.
    N. Berkovits, E. Witten, Conformal supergravity in twistor-string theory. J. High Energy Phys. 0408, 009 (2004). [hep-th/0406051]Google Scholar
  28. 28.
    R. Roiban, M. Spradlin, A. Volovich, On the tree level S matrix of Yang-Mills theory. Phys. Rev. D70, 026009 (2004). [hep-th/0403190]Google Scholar
  29. 29.
    L. Mason, Twistor actions for non-self-dual fields: A derivation of twistor-string theory. J. High Energy Phys. 0510, 009 (2005). [hep-th/0507269]Google Scholar
  30. 30.
    R. Boels, L. Mason, D. Skinner, Supersymmetric Gauge theories in twistor space. J. High Energy Phys. 0702, 014 (2007). [hep-th/0604040]Google Scholar
  31. 31.
    A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473Google Scholar
  32. 32.
    L. Mason, D. Skinner, The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space. J. High Energy Phys. 1012, 018 (2010). [arXiv:1009.2225]Google Scholar
  33. 33.
    S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality. J. High Energy Phys. 1107, 058 (2011). [arXiv:1010.1167]Google Scholar
  34. 34.
    M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. J. High Energy Phys. 1012, 032 (2010). [arXiv:1009.1854]Google Scholar
  35. 35.
    M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921Google Scholar
  36. 36.
    M. Bullimore, D. Skinner, Holomorphic linking, loop equations and scattering amplitudes in twistor space, arXiv:1101.1329Google Scholar
  37. 37.
    M. Bullimore, D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Mathematical InstituteRadcliffe Observatory QuarterOxfordUK

Personalised recommendations