Introduction
Chapter
First Online:
- 435 Downloads
Abstract
Scattering amplitudes are fundamental and remarkably rich observables in quantum field theory. The single most important observation in this subject is that scattering amplitudes are often much simpler than one expects from a typical Feynman diagram expansion. Understanding the implications of this simple fact has lead to the development of new and efficient computational techniques and to the discovery of new mathematical structures in theoretical physics.
Keywords
Diagram Expansion Momentum Twistor Space Null Polygonal Wilson Loops Wilson Loop Tree-level Superamplitudes
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.S.J. Parke, T. Taylor, An amplitude for \(n\) gluon scattering. Phys. Rev. Lett. 56, 2459 (1986)ADSCrossRefGoogle Scholar
- 2.R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. B715, 499–522 (2005). [hep-th/0412308]Google Scholar
- 3.R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). [hep-th/0501052]Google Scholar
- 4.F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. J. High Energy Phys. 0409, 006 (2004). [hep-th/0403047]Google Scholar
- 5.K. Risager, A direct proof of the CSW rules. J. High Energy Phys. 0512, 003 (2005). [hep-th/0508206]Google Scholar
- 6.Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B425, 217–260 (1994). [hep-ph/9403226]Google Scholar
- 7.Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B435, 59–101 (1995). [hep-ph/9409265]Google Scholar
- 8.C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde et al., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D78, 036003 (2008). [arXiv:0803.4180]Google Scholar
- 9.J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). [hep-th/9711200]Google Scholar
- 10.E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). [hep-th/9802150]Google Scholar
- 11.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). [hep-th/9802109]Google Scholar
- 12.L.F. Alday, J.M. Maldacena, Gluon scattering amplitudes at strong coupling. J. High Energy Phys. 0706, 064 (2007). [arXiv:0705.0303]Google Scholar
- 13.G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008). [arXiv:0707.0243]Google Scholar
- 14.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010). [arXiv:0712.1223]Google Scholar
- 15.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, On planar gluon amplitudes/Wilson loops duality. Nucl. Phys. B795, 52–68 (2008). [arXiv:0709.2368]Google Scholar
- 16.A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N=4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008). [arXiv:0707.1153]Google Scholar
- 17.J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory. Nucl. Phys. B828, 317–374 (2010). [arXiv:0807.1095]Google Scholar
- 18.N. Berkovits, J. Maldacena, Fermionic T-Duality, dual superconformal symmetry, and the amplitude/Wilson loop connection. J. High Energy Phys. 0809, 062 (2008). [arXiv:0807.3196]Google Scholar
- 19.N. Beisert, T-Duality, dual conformal symmetry and integrability for strings on adS(5) x S**5. Fortsch. Phys. 57, 329–337 (2009). [arXiv:0903.0609]Google Scholar
- 20.R. Penrose, Twistor algebra. J. Math. Phys. 8, 345 (1967)MathSciNetADSCrossRefzbMATHGoogle Scholar
- 21.R. Penrose, M.A. MacCallum, Twistor theory: An approach to the quantization of fields and space-time. Phys. Rept. 6, 241–316 (1972)MathSciNetADSCrossRefGoogle Scholar
- 22.A.P. Hodges, S. Huggett, Twistor diagrams. Surveys High Energ. Phys. 1, 333–353 (1980)ADSCrossRefGoogle Scholar
- 23.A.P. Hodges, Twistor diagrams and massless Moller scattering. Proc. Roy. Soc. Lond. A385, 207–228 (1983)MathSciNetADSCrossRefGoogle Scholar
- 24.A.P. Hodges, Twistor diagrams and massless compton scattering. Proc. Roy. Soc. Lond. A386, 185–210 (1983)MathSciNetADSCrossRefGoogle Scholar
- 25.E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189–258 (2004). [hep-th/0312171]Google Scholar
- 26.N. Berkovits, An alternative string theory in twistor space for N=4 superYang-Mills. Phys. Rev. Lett. 93, 011601 (2004). [hep-th/0402045]Google Scholar
- 27.N. Berkovits, E. Witten, Conformal supergravity in twistor-string theory. J. High Energy Phys. 0408, 009 (2004). [hep-th/0406051]Google Scholar
- 28.R. Roiban, M. Spradlin, A. Volovich, On the tree level S matrix of Yang-Mills theory. Phys. Rev. D70, 026009 (2004). [hep-th/0403190]Google Scholar
- 29.L. Mason, Twistor actions for non-self-dual fields: A derivation of twistor-string theory. J. High Energy Phys. 0510, 009 (2005). [hep-th/0507269]Google Scholar
- 30.R. Boels, L. Mason, D. Skinner, Supersymmetric Gauge theories in twistor space. J. High Energy Phys. 0702, 014 (2007). [hep-th/0604040]Google Scholar
- 31.A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473Google Scholar
- 32.L. Mason, D. Skinner, The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space. J. High Energy Phys. 1012, 018 (2010). [arXiv:1009.2225]Google Scholar
- 33.S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality. J. High Energy Phys. 1107, 058 (2011). [arXiv:1010.1167]Google Scholar
- 34.M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. J. High Energy Phys. 1012, 032 (2010). [arXiv:1009.1854]Google Scholar
- 35.M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921Google Scholar
- 36.M. Bullimore, D. Skinner, Holomorphic linking, loop equations and scattering amplitudes in twistor space, arXiv:1101.1329Google Scholar
- 37.M. Bullimore, D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014