Skip to main content

Introduction

  • Chapter
  • First Online:
  • 568 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Scattering amplitudes are fundamental and remarkably rich observables in quantum field theory. The single most important observation in this subject is that scattering amplitudes are often much simpler than one expects from a typical Feynman diagram expansion. Understanding the implications of this simple fact has lead to the development of new and efficient computational techniques and to the discovery of new mathematical structures in theoretical physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.J. Parke, T. Taylor, An amplitude for \(n\) gluon scattering. Phys. Rev. Lett. 56, 2459 (1986)

    Article  ADS  Google Scholar 

  2. R. Britto, F. Cachazo, B. Feng, New recursion relations for tree amplitudes of gluons. Nucl. Phys. B715, 499–522 (2005). [hep-th/0412308]

    Google Scholar 

  3. R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory. Phys. Rev. Lett. 94, 181602 (2005). [hep-th/0501052]

    Google Scholar 

  4. F. Cachazo, P. Svrcek, E. Witten, MHV vertices and tree amplitudes in gauge theory. J. High Energy Phys. 0409, 006 (2004). [hep-th/0403047]

    Google Scholar 

  5. K. Risager, A direct proof of the CSW rules. J. High Energy Phys. 0512, 003 (2005). [hep-th/0508206]

    Google Scholar 

  6. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B425, 217–260 (1994). [hep-ph/9403226]

    Google Scholar 

  7. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B435, 59–101 (1995). [hep-ph/9409265]

    Google Scholar 

  8. C. Berger, Z. Bern, L. Dixon, F. Febres Cordero, D. Forde et al., An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D78, 036003 (2008). [arXiv:0803.4180]

    Google Scholar 

  9. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). [hep-th/9711200]

    Google Scholar 

  10. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). [hep-th/9802150]

    Google Scholar 

  11. S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). [hep-th/9802109]

    Google Scholar 

  12. L.F. Alday, J.M. Maldacena, Gluon scattering amplitudes at strong coupling. J. High Energy Phys. 0706, 064 (2007). [arXiv:0705.0303]

    Google Scholar 

  13. G. Korchemsky, J. Drummond, E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops. Nucl. Phys. B795, 385–408 (2008). [arXiv:0707.0243]

    Google Scholar 

  14. J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Conformal ward identities for Wilson loops and a test of the duality with gluon amplitudes. Nucl. Phys. B826, 337–364 (2010). [arXiv:0712.1223]

    Google Scholar 

  15. J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, On planar gluon amplitudes/Wilson loops duality. Nucl. Phys. B795, 52–68 (2008). [arXiv:0709.2368]

    Google Scholar 

  16. A. Brandhuber, P. Heslop, G. Travaglini, MHV amplitudes in N=4 super Yang-Mills and Wilson loops. Nucl. Phys. B794, 231–243 (2008). [arXiv:0707.1153]

    Google Scholar 

  17. J. Drummond, J. Henn, G. Korchemsky, E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory. Nucl. Phys. B828, 317–374 (2010). [arXiv:0807.1095]

    Google Scholar 

  18. N. Berkovits, J. Maldacena, Fermionic T-Duality, dual superconformal symmetry, and the amplitude/Wilson loop connection. J. High Energy Phys. 0809, 062 (2008). [arXiv:0807.3196]

    Google Scholar 

  19. N. Beisert, T-Duality, dual conformal symmetry and integrability for strings on adS(5) x S**5. Fortsch. Phys. 57, 329–337 (2009). [arXiv:0903.0609]

    Google Scholar 

  20. R. Penrose, Twistor algebra. J. Math. Phys. 8, 345 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Penrose, M.A. MacCallum, Twistor theory: An approach to the quantization of fields and space-time. Phys. Rept. 6, 241–316 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  22. A.P. Hodges, S. Huggett, Twistor diagrams. Surveys High Energ. Phys. 1, 333–353 (1980)

    Article  ADS  Google Scholar 

  23. A.P. Hodges, Twistor diagrams and massless Moller scattering. Proc. Roy. Soc. Lond. A385, 207–228 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  24. A.P. Hodges, Twistor diagrams and massless compton scattering. Proc. Roy. Soc. Lond. A386, 185–210 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  25. E. Witten, Perturbative gauge theory as a string theory in twistor space. Commun. Math. Phys. 252, 189–258 (2004). [hep-th/0312171]

    Google Scholar 

  26. N. Berkovits, An alternative string theory in twistor space for N=4 superYang-Mills. Phys. Rev. Lett. 93, 011601 (2004). [hep-th/0402045]

    Google Scholar 

  27. N. Berkovits, E. Witten, Conformal supergravity in twistor-string theory. J. High Energy Phys. 0408, 009 (2004). [hep-th/0406051]

    Google Scholar 

  28. R. Roiban, M. Spradlin, A. Volovich, On the tree level S matrix of Yang-Mills theory. Phys. Rev. D70, 026009 (2004). [hep-th/0403190]

    Google Scholar 

  29. L. Mason, Twistor actions for non-self-dual fields: A derivation of twistor-string theory. J. High Energy Phys. 0510, 009 (2005). [hep-th/0507269]

    Google Scholar 

  30. R. Boels, L. Mason, D. Skinner, Supersymmetric Gauge theories in twistor space. J. High Energy Phys. 0702, 014 (2007). [hep-th/0604040]

    Google Scholar 

  31. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, arXiv:0905.1473

    Google Scholar 

  32. L. Mason, D. Skinner, The complete planar S-matrix of N=4 SYM as a Wilson loop in twistor space. J. High Energy Phys. 1012, 018 (2010). [arXiv:1009.2225]

    Google Scholar 

  33. S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality. J. High Energy Phys. 1107, 058 (2011). [arXiv:1010.1167]

    Google Scholar 

  34. M. Bullimore, L. Mason, D. Skinner, MHV diagrams in momentum twistor space. J. High Energy Phys. 1012, 032 (2010). [arXiv:1009.1854]

    Google Scholar 

  35. M. Bullimore, MHV diagrams from an all-line recursion relation, arXiv:1010.5921

    Google Scholar 

  36. M. Bullimore, D. Skinner, Holomorphic linking, loop equations and scattering amplitudes in twistor space, arXiv:1101.1329

    Google Scholar 

  37. M. Bullimore, D. Skinner, Descent equations for superamplitudes, arXiv:1112.1056

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew Richard Bullimore .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bullimore, M.R. (2014). Introduction. In: Scattering Amplitudes and Wilson Loops in Twistor Space. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00909-4_1

Download citation

Publish with us

Policies and ethics