Advertisement

Gold Catalysts Stability

Chapter
  • 647 Downloads
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Long-term stability of catalysts is required for industrial applications. One of the most important advantages with respect to gold catalysts is their stability in oxidizing atmospheres. Catalyst deactivation can be caused, however, by other reasons, such as catalyst surface reconstruction, leaching of the active phase, strong adsorption of organic molecules and poisoning by inorganic compounds. A few studies addressed stability of gold catalysts in biomass conversion. In carbohydrates oxidation gold catalysts demonstrated long-term stability, while catalyst deactivation due to the coke formation was observed in α-pinene isomerization. Complete catalyst regeneration was achieved by catalyst calcination at high temperature, although the same approach was not efficient in case of the lignan HMR oxidation.

Keywords

Stability Deactivation Gold 

References

  1. 1.
    E.V. Murzina, A.V. Tokarev, K. Kordas, H. Karhu, J.-P. Mikkola, D.Yu. Murzin, Catal. Today 131, 385 (2008)CrossRefGoogle Scholar
  2. 2.
    A. Mirescu, U. Prüβe, Appl. Catal. B 70 644 (2007)Google Scholar
  3. 3.
    B. Kusema, B.C. Campo, P. Maki-Arvela, T. Salmi, D.Yu. Murzin, Appl. Catal. A 386, 101 (2010)CrossRefGoogle Scholar
  4. 4.
    O.A. Simakova, V.I. Sobolev, KYu. Koltunov, B. Campo, A.-R. Leino, K. Kords, D.Yu. Murzin, ChemCatChem 2, 1535 (2010)CrossRefGoogle Scholar
  5. 5.
    U. Prüβe, M. Herrmann, C. Baatz, N. Decker, Appl. Catal. A 406 (2011) 89Google Scholar
  6. 6.
    A. Mirescu, H. Berndt, A. Martin, U. Prüβe. Appl. Catal. A 317, 204 (2007)CrossRefGoogle Scholar
  7. 7.
    O.A. Simakova, E.V. Murzina, A.-R. Leino, P. Mäki-Arvela, D.Yu. Murzin, Catal. Lett. 142, 1011 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Prati, M. Rossi, J. Catal. 176, 552 (1998)CrossRefGoogle Scholar
  9. 9.
    S. Demirel-Gülen, M. Lucas, P. Claus, Catal. Today 102–103, 166 (2005)CrossRefGoogle Scholar
  10. 10.
    S. Demirel, K. Lehnert, M. Lucas, P. Claus, Appl. Catal. B 70, 637 (2007)CrossRefGoogle Scholar
  11. 11.
    I. Sobczak, K. Jagodzinska, M. Ziolek, Catal. Today 158, 121 (2010)CrossRefGoogle Scholar
  12. 12.
    I.L. Simakova, Y.S. Solkina, B.L. Moroz, O.A. Simakova, S.I. Reshetnikov, I.P. Prosvirin, V.I. Bukhtiyarov, V.N. Parmon, D.Yu. Murzin, Appl. Catal. A 385, 136 (2010)CrossRefGoogle Scholar
  13. 13.
    N. Thielecke, M. Aytemir, U. Prüβe, Catal. Tod. 121 (2007) 115Google Scholar
  14. 14.
    S. Biella, G.L. Castiglioni, C. Fumagalli, L. Prati, M. Rossi, Catal. Today 72, 43 (2002)CrossRefGoogle Scholar
  15. 15.
    B.N. Zope, R.J. Davis, Top. Catal. 52, 269 (2009)CrossRefGoogle Scholar
  16. 16.
    B.N. Zope, R.J. Davis, Green Chem. 13, 3484 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Solkina, S.I. Reshetnikov, M. Estrada, A. Simakov, D.Yu. Murzin, I.L. Simakova, Chem. Eng. J. 176–177, 42 (2011)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurkuFinland
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations