Advertisement

Introduction

Chapter
  • 658 Downloads
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Biomass-derived compounds can be transformed into valuable chemicals over gold catalysts via reactions including basic chemical reactions such as selective oxidation, hydrogenation and isomerization. Gold catalysts were extensively studied in the selective oxidation of cellulose and hemicelluloses-derived carbohydrates and their derivatives. Synthesis of fine chemicals from biomass extractives was investigated, focusing on reactions of the lignans, fatty acids and resins. The outstanding activity and selectivity of gold catalysts were attributed to the several main parameters, among them electronic structure changes via activation of the particles and presence of low-coordinated gold atoms.

Keywords

Biomass Carbohydrates Extractives Fine chemicals Gold catalysts 

References

  1. 1.
    Report of the United Nations Conference on Environment and Development, Rio de Janeiro, June 3–14, 1992, http://www.un.org/esa/sustdev
  2. 2.
    Technology Vision 2020, The US Chemical Industry (1996), http://www.ccrhq.org/vision/index.html
  3. 3.
    CEFIC, www.cefic.be
  4. 4.
    A. Corma, S. Iborra, A. Velty, Chem. Rev. 207, 2411 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Mäki-Arvela, B. Holmbom, T. Salmi, D.Yu. Murzin, Catal. Rev. 49, 197 (2007)CrossRefGoogle Scholar
  6. 6.
    G. Budroni, A. Corma, J. Catal. 257, 403 (2008)CrossRefGoogle Scholar
  7. 7.
    J.N. Chheda, J.A. Dumesic, Catal. Today 123, 59 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.Z. Lai, Chemical degradation, in Wood and Cellulosic Chemistry, 2nd ed. (Dekker, Basel, 2001)Google Scholar
  9. 9.
    N. Abatzoglou, E. Chornet, Acid hydrolysis of hemicellulose and cellulose: theory and Applications, in Polysaccharides: Structural Diversity and Functional Versatility, ed. by S. Dumitriu (Marcel Dekkes, New York, 1998), pp. 1007–1045 Google Scholar
  10. 10.
    A. Fukuoka, P.L. Dhepe, Angew. Chem., Int. Ed. 45, 5161 (2006)Google Scholar
  11. 11.
    V. Jollet, F. Chambon, F. Rataboul, A. Cabiac, C. Pinel, E. Guillon, N. Essayem, Green Chem. 11, 2052 (2009)CrossRefGoogle Scholar
  12. 12.
    W. Deng, M. Liu, X. Tan, Q. Zhang, Y. Wang, J. Catal. 271, 22 (2010)CrossRefGoogle Scholar
  13. 13.
    B.T. Kusema, C. Xu, P. Mäki-Arvela, S. Willför, B. Holmbom, T. Salmi, D. Yu. Murzin, Int. J. Chem. React. Eng. 8(A44), 1 (2010)Google Scholar
  14. 14.
    B.T. Kusema, G. Hilpmann, P. Mäki-Arvela, S. Willför, B. Holmbom, T. Salmi, D.Yu. Murzin, Catal. Lett. 141, 408 (2011)CrossRefGoogle Scholar
  15. 15.
    J.N. Cheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46, 7164 (2007)CrossRefGoogle Scholar
  16. 16.
    A.V. Tokarev, E.V. Murzina, J.-P. Mikkola, J. Kuusisto, L.M. Kustov, D.Yu. Murzin, Chem. Eng. J. 134, 153 (2007)Google Scholar
  17. 17.
    E.V. Murzina, A.V. Tokarev, K. Kordas, H. Karhu, J.-P. Mikkola, D.Yu. Murzin, Catal. Today 131, 385 (2008)CrossRefGoogle Scholar
  18. 18.
    D.Yu. Murzin, E.V. Murzina, A.V. Tokarev, J.-P. Mikkola, Russ. J. Electrochem. 45, 1017 (2009)CrossRefGoogle Scholar
  19. 19.
    A. Mirescu, U. Prüe, Appl. Catal. B 70, 644 (2007)Google Scholar
  20. 20.
    B. Kusema, B.C. Campo, P. Maki-Arvela, T. Salmi, D.Yu. Murzin, Appl. Catal. A 386, 101 (2010)CrossRefGoogle Scholar
  21. 21.
    N. Sarkar, S.K. Ghosh, S. Bannerjee, K. Aikat, Renew. Energy 37, 19 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Román-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312, 1933 (2006)CrossRefGoogle Scholar
  23. 23.
    H.B. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316, 1597 (2007)CrossRefGoogle Scholar
  24. 24.
    Y. Román-Leshkov, C.J. Barret, Z.Y. Liu, J.A. Dumesic, Nature 447, 982 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Gandini, A.J.D. Silvestre, C. Pascoal Netro, A.F. Sousa, M. Gomes, J. Polym. Sci. A: Polym. Chem. 47, 295 (2008)CrossRefGoogle Scholar
  26. 26.
    Top Value Added Chemicals from Biomass, US Department of Energy (2004), http://www.eere.energy-gov/biomass/pdfs/35523.pdf
  27. 27.
    R. Ekman, Holzforschung 30, 79 (1976)CrossRefGoogle Scholar
  28. 28.
    S. Willför, P. Eklund, R. Sjöholm, M. Reunanen, R. Sillanpää, S. von Schoultz, J. Hemming, L. Nisula, B. Holmbom, Holzforschung 59, 413 (2005)CrossRefGoogle Scholar
  29. 29.
    P.C. Eklund, S. Willför, A. Smeds, B.R. Holmbom, R.E. Sjöholm, J. Nat. Prod. 67, 927 (2004)CrossRefGoogle Scholar
  30. 30.
    S. Willför, J. Hemming, M. Reunanen, C. Eckerman, B. Holmbom, Holzforschung 57, 27 (2003)Google Scholar
  31. 31.
    H. Adlercreutz, Phytoestrogens and human health, in Reproductive and Developmental Toxicology, ed. by K. Korach (Marcel & Dekker, New York, 1998), pp. 299–371Google Scholar
  32. 32.
    S.M. Willför, M.O. Ahotupa, J.E. Hemming, M.H.T. Reunanen, P.C. Eklund, R.E. Sjöholm, C.S.E. Eckerman, S.P. Pohjamo, B.R. Holmbom, J. Agric. Food Chem. 51, 7600 (2003)CrossRefGoogle Scholar
  33. 33.
    S. Yamaguchi, T. Sugahara, Y. Nakashima, A. Okada, K. Akiyama, T. Kishida, M. Maruyama, T. Masuda, Biosci. Biotechnol. Biochem. 70, 1934 (2006)CrossRefGoogle Scholar
  34. 34.
    P.C. Eklund, O.K. Långvik, J.P. Wärnå, T.O. Salmi, S.M. Willför, R.E. Sjöholm, Org. Biomol. Chem. 3, 3336 (2005)CrossRefGoogle Scholar
  35. 35.
    H. Korte, M. Unkila, M. Hiilovaara-Teijo, V.-M. Lehtola, M. Ahotupa, Patent WO/2004/000304 A1 (2003)Google Scholar
  36. 36.
    T. Ahlnäs, Patent WO 2008/020112 A1 (2008)Google Scholar
  37. 37.
    L.-H. Norlin, Ullmann’s Encyclopedia of Industrial Chemistry, 6th edn., Vol. 35 (Wiley-VCH, Weinheim, 2003), pp. 451–464Google Scholar
  38. 38.
    Y.L. Ha, N.K. Grimm, M.W. Pariza, Carcinogenesis 8, 1881 (1987)CrossRefGoogle Scholar
  39. 39.
    L.D. Whingham, C.A. Watras, D.A. Scholler, Am. J. Clin. Nutr. 85, 1203 (2007)Google Scholar
  40. 40.
    S.F. Chin, W. Liu, M. Storkson, Y.L. Ha, M.W. Pariza, J. Food Compos Anal. 5, 185 (1992)CrossRefGoogle Scholar
  41. 41.
    L.D. Whigham, M.E. Cook, R.L. Atkinson, Pharmacol. Res. 42, 503 (2000)CrossRefGoogle Scholar
  42. 42.
    V. Mougios, A. Matsakas, A. Petridou, S. Ring, A. Sagredos, A. Melissopoulou, N. Tsigilis, M. Nikolaidis, J. Nutr. Biochem. 12, 585 (2001)CrossRefGoogle Scholar
  43. 43.
    Y. Zheng, X. Chen, Y. Shen, Chem. Rev. 108, 5253–5277 (2008)CrossRefGoogle Scholar
  44. 44.
    M. Gscheidmeier, H. Fleig, Turoentines, in Ulmann’s Encyclopedia of Industrial Chemistry, 6th edn., vol. 37 (Wiley-VCH, Weinheim, 2003), pp. 561–575Google Scholar
  45. 45.
    K. Bauer, D. Garbe, H. Surburg, Common Fragrance Flavor Materials: Preparation Properties Uses (Wiley, New York, 1997)CrossRefGoogle Scholar
  46. 46.
    M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 2, 405 (1987)CrossRefGoogle Scholar
  47. 47.
    A. Abad, P. Conception, A. Corma, H. Garcia, Angew. Chem. Int. Ed. 44, 4066 (2005)CrossRefGoogle Scholar
  48. 48.
    A. Corma, M.E. Domine, Chem. Commun. 32, 4042 (2005)CrossRefGoogle Scholar
  49. 49.
    US Patent 374 2079 to Mobil Oil Corp. (1973); Chem. Abs. 79, 92807 (1973)Google Scholar
  50. 50.
    M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley, G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnstone, K. Griffin, C.J. Kiely, Nature 437, 1132 (2005)CrossRefGoogle Scholar
  51. 51.
    R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X.-L. Wang, J. Suo, Catal. Lett. 97, 115 (2004)CrossRefGoogle Scholar
  52. 52.
    M. Comotti, C. Della Pina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed. 43, 5812 (2004)CrossRefGoogle Scholar
  53. 53.
    F. Porta, L. Prati, J. Catal. 224, 397 (2004)CrossRefGoogle Scholar
  54. 54.
    S. Carrettin, P. McMorn, P. Johnstone, K. Griffin, G.J. Hutchings, Chem. Commun. 697 (2002)Google Scholar
  55. 55.
    Z. Hao, L. An, H. Wang, T. Hu, React. Kinet. Catal. Lett. 70, 153 (2000)CrossRefGoogle Scholar
  56. 56.
    G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41, 319 (1999)CrossRefGoogle Scholar
  57. 57.
    N. Lopez, T.V.P. Janssens, B.S. Claussen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K. NØrskov, J. Catal. 223, 232 (2004)CrossRefGoogle Scholar
  58. 58.
    B. Hvolbæk, T.V.W. Janssens, B.S. Claussen, H. Falsig, C.H. Christensen, J.K. Nørskov, Nanotoday 2, 14 (2007)Google Scholar
  59. 59.
    F. Boccuzzi, A. Chiorino, S. Tsubota, M. Haruta, J. Phys. Chem. B 100, 3625 (1996)CrossRefGoogle Scholar
  60. 60.
    S. Miscino, S. Scire, C. Crisafulli, A.M. Visco, S. Galvagno, Catal. Lett. 44, 273 (1997)Google Scholar
  61. 61.
    A. Sanchez, S. Abbet, U. Heiz, W.-D. Schneider, H. Hakkinen, R.N. Barnett, U. Landman, J. Phys. Chem. A 103, 9573 (1999)CrossRefGoogle Scholar
  62. 62.
    Y. Xu, M. Mavrikakis, J. Phys. Chem. B 107, 690 (2003)Google Scholar
  63. 63.
    B.E. Salisbury, W.T. Wallance, R.L. Whetten, Chem. Phys. 262, 131 (2000)CrossRefGoogle Scholar
  64. 64.
    M.C. Kung, R.J. Davis, H.H. Kung, J. Phys. Chem. C 111, 11767 (2007)CrossRefGoogle Scholar
  65. 65.
    G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, J. Chem. Soc. Chem. Commun. 444 (1973)Google Scholar
  66. 66.
    P. Claus, Appl. Catal. A 291, 222 (2005)CrossRefGoogle Scholar
  67. 67.
    A. Corma, P. Serna, Science 313, 332 (2006)CrossRefGoogle Scholar
  68. 68.
    A. Corma, P. Concepcion, P. Serna, Angew. Chem. Int. Ed. 46, 7266 (2007)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Laboratory of Industrial Chemistry and Reaction EngineeringÅbo Akademi UniversityTurkuFinland
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Chemical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations