Skip to main content

The Role of Electrostatic Ion Correlations in Ion Condensation

  • Chapter
  • First Online:
  • 502 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In the past decade, significant theoretical progress has been made in understanding the regime where electrostatic ion correlations dominate in a classical Coulomb fluid, i.e., the strong-coupling limit (SC). The SC models are often based on the picture of a 2-dimensional ionic layer near the charged surface due to Rouzina and Bloomfield [1]. These authors proposed that the character of electrostatic correlations amongst counter-ions near a charged surface is 2-dimensional rather than 3-dimensional.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rouzina, I., Bloomfield, V.A.: Macroion attraction due to electrostatic correlation between screening counterions. 1. mobile surface-adsorbed ions and diffuse ion cloud. J. Phys. Chem. 100, 9977 (1996)

    Article  Google Scholar 

  2. Shklovskii, B.: Wigner crystal model of counterion induced bundle formation of rodlike polyelectrolytes. Phys. Rev. Lett. 82(16), 3268–3271 (1999)

    Article  ADS  Google Scholar 

  3. Grosberg, A.Y., Nguyen, T.T., Shklovskii, B.I.: The physics of charge inversion in chemical and biological systems. Rev. Mod. Phys. 74, 329 (2002)

    Article  ADS  Google Scholar 

  4. Moreira, A.G., Netz, R.R.: Binding of similarly charged plates with counterions only. Phys. Rev. Lett. 87(7), 078301 (2001)

    Article  ADS  Google Scholar 

  5. Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: From one plate to like-charge attraction. Phys. Rev. Lett. 106(7), 078301 (2011)

    Article  ADS  Google Scholar 

  6. Stevens, M., Robbins, M.: Density functional theory of ionic screening: when do like charges attract? Europhys. Lett. 12, 81–86 (1990)

    Article  ADS  Google Scholar 

  7. Penfold, R., Nordholm, S., Jonsson, B., Woodward, C.E.: A simple analysis of ion-ion correlation in polyelectrolyte solutions. J. Chem. Phys. 92(3), 1915 (1990)

    Article  ADS  Google Scholar 

  8. Nordholm, S.: Simple analysis of the thermodynamic properties of the one-component plasma. Chem. Phys. Lett. 105, 301 (1984)

    Article  ADS  Google Scholar 

  9. Groot, R.D.: Ion condensation on solid particles: theory and simulations. J. Chem. Phys. 95(12), 9191 (1991)

    Article  ADS  Google Scholar 

  10. Diehla, A., Tamashiro, M.N., Barbosa, M.C., Levin, Y.: Density-functional theory for attraction between like-charged plates. Phys. A 274, 433–445 (1999)

    Article  Google Scholar 

  11. Barbosa, M.C., Deserno, M., Holm, C.: A stable local density functional apporach to ion-ion correlations. Europhys. Lett. 52, 80 (2000)

    Article  ADS  Google Scholar 

  12. Kjellander, R., Marcelja, S.: Inhomogeneous coulomb fluids with image interactions between planar surfaces. i. J. Chem. Phys. 82(4), 2122 (1985)

    Article  ADS  Google Scholar 

  13. Kjellander, R.: Inhomogeneous coulomb fluids with image interactions between planar surfaces. ii. on the anisotropic hypernetted chain approximation. J. Chem. Phys. 88(11), 7129 (1988)

    Article  ADS  Google Scholar 

  14. Kjellander, R., Marcelja, S.: Inhomogeneous coulomb fluids with image interactions between planar surfaces. iii. distribution functions. J. Chem. Phys. 88(11), 7138 (1988)

    Article  ADS  Google Scholar 

  15. Kjellander, R., et al.: Double-layer ion correlation forces restrict calcium-clay swelling. J. Phys. Chem. 92, 6489–6492 (1988)

    Article  Google Scholar 

  16. Wernersson, E., Kjellander, R., Lyklema, J.: Charge inversion and ion ion correlation effects at the mercury/aqueous MgSO\(_{4}\) interface: toward the solution of a long-standing issue. J. Phys. Chem. C 114, 1849–1866 (2010)

    Article  Google Scholar 

  17. Wang, W., Park, R.Y., Travesset, A., Vaknin, D.: Ion-specific induced charges at aqueous soft interfaces. Phys. Rev. Lett. 106(5), 056102 (2011)

    Article  ADS  Google Scholar 

  18. Martín-Molina, A., Rodríguez-Beas, C., Faraudo, J.: Charge reversal in anionic liposomes: experimental demonstration and molecular origin. Phys. Rev. Lett. 104(16), 168103 (2010)

    Article  ADS  Google Scholar 

  19. Debye, P. Hückel, E.: The theory of electrolytes. i. lowering of freezing point and related phenomena. Phys. Z. 24, 185–206 (1923)

    Google Scholar 

  20. Levin, Y.: Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65, 1577 (2002)

    Article  ADS  Google Scholar 

  21. Baus, M., Hansen, J.-P.: Statistical mechanics of simple coulomb systems. Phys. Rep. 59(1), 1–94 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  22. Luo, G., Malkova, S., Yoon, J., Schultz, D.G., Lin, B., Meron, M., Benjamin, I., Vanysek, P., Schlossman, M.L.: Ion distributions at the nitrobenzene-water interface electrified by a common ion. J. Electroanal. Chem. 593, 142–158 (2006)

    Article  Google Scholar 

  23. Luo, G., Malkova, S., Yoon, J., Schultz, D.G., Lin, B., Meron, M., Benjamin, I., Vanysek, P., Schlossman, M.L.: Ion distributions near a liquid-liquid interface. Science 311, 216–218 (2006)

    Article  ADS  Google Scholar 

  24. Wick, C.D., Dang, L.X.: Molecular dynamics study of ion transfer and distribution at the interface of water and 1,2-dichloroethane. J. Phys. Chem. C 112(3), 647–649 (2008)

    Article  Google Scholar 

  25. Hou, B.: Ion distributions at electrified liquid-liquid interfaces: an agreement between X-ray reflectivity analysis and macroscopic measurements. Doctoral dissertation, University of Illinois at Chicago (2011)

    Google Scholar 

  26. Tarazona, P.: Free-energy density functional for hard spheres. Phys. Rev. A 31(4), 2672 (1985)

    Article  ADS  Google Scholar 

  27. Curtin, W., Ashcroft, N.: Phys. Rev. A 32, 2909 (1985)

    Article  ADS  Google Scholar 

  28. Mitrinovic, D.M., Tikhonov, A.M., Li, M., Huang, Z., Schlossman, M.L.: Noncapillary-wave structure at the water-alkane interface. Phys. Rev. Lett. 85, 582 (2000)

    Article  ADS  Google Scholar 

  29. Buff, F.P., Lovett, R.A., Stillinger, F.H.: Interfacial density profile for fluids in the critical region. Phys. Rev. Lett. 15, 621 (1965)

    Article  ADS  Google Scholar 

  30. Laanait, N., Yoon, J., Hou, B., Vanysek, P., Meron, M., Lin, B., Luo, G., Benjamin, I., Schlossman, M.: Communications: monovalent ion condensations at the electrified liquid/liquid interface. J. Chem. Phys. 132, 171101 (2010)

    Article  ADS  Google Scholar 

  31. Torrie, G., Valleau, J.: Double layer structure at the interface between two immiscible electrolyte solutions. J. Electroanal. Chem. 206, 69–79 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouamane Laanait .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laanait, N. (2013). The Role of Electrostatic Ion Correlations in Ion Condensation. In: Ion Correlations at Electrified Soft Matter Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00900-1_7

Download citation

Publish with us

Policies and ethics