Skip to main content

Molecular Dynamics Simulation of Solvent Correlations

  • Chapter
  • First Online:
Book cover Ion Correlations at Electrified Soft Matter Interfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 489 Accesses

Abstract

One of the main challenges encountered in the investigations of the electrical double layer is the complexity of ion specific effects, especially in regard to quantifying ion-solvent correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marcus, Y.: Ion Solvation. Wiley, New York (1985)

    Google Scholar 

  2. Ben-Naim, A.: Molecular Theory of Solutions. Oxford University Press, Oxford (2006)

    Google Scholar 

  3. Hansen, J.-P., McDonald, I.: Theory of Simple Liquids, 3rd edn. Elsevier, Amsterdam (2006)

    Google Scholar 

  4. Benjamin, I.: Theoretical study of water/1,2-dichloroethane interface: Structure, dynamics and conformation equilibrium at the liquid-liquid interface. J. Chem. Phys. 97, 1432 (1992)

    Article  ADS  Google Scholar 

  5. Wick, C.D., Dang, L.X.: Molecular dynamics study of ion transfer and distribution at the interface of water and 1,2-dichloroethane. J. Phys. Chem. C 112(3), 647–649 (2008)

    Article  Google Scholar 

  6. Berendsen, H. J. C., Postma, J. P. M., van Gunstersen, W. F., and Hermans, J.: Intermolecular Forces. D. Reidel Publishing Company, Dordrecht (1981)

    Google Scholar 

  7. Schmidt, J.R., Roberts, S., Loparo, J., Tokmakoff, A., Fayer, M., Skinner, J.: Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments? Chem. Phys. 341, 143–157 (Jan 2007)

    Article  ADS  Google Scholar 

  8. Zhang, Z., Piatkowski, L., Bakker, H.J., Bonn, M.: Communication: Interfacial water structure revealed by ultrafast two-dimensional surface vibrational spectroscopy. J. Chem. Phys. 135(2), 021101 (2011)

    Article  ADS  Google Scholar 

  9. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  10. Benjamin, I.: Structure and dynamics of hydrated ions in a water-immiscible organic solvent. J. Phys. Chem. B 112, 15801–15806 (2008)

    Article  Google Scholar 

  11. Benjamin, I.: Theoretical study of ion solvation at the water liquid-vapor interface. J. Chem. Phys. 95(5), 3698 (1991)

    Article  ADS  MATH  Google Scholar 

  12. Henderson, D. (ed.): Fundamentals of Inhomogeneous Fluids. Marcel Dekker, New York (1992)

    Google Scholar 

  13. Rose, D., Benjamin, I.: Free energy of transfer of hydrated ion clusters from water to an immiscible organic solvent. J. Phys. Chem. B 113, 9296–9303 (2009)

    Article  Google Scholar 

  14. Wick, C.D., Dang, L.X.: Recent advances in understanding transfer ions across aqueous interfaces. Chem. Phys. Lett. 458, 1–5 (2008)

    Article  ADS  Google Scholar 

  15. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  Google Scholar 

  16. Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al.: Gaussian 03. Gaussian, Inc. Wallingford (2004)

    Google Scholar 

  17. Cornell, W., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  18. Firlej, L., Kuchta, B., Wexler, C., Pfeifer, P.: Boron substituted graphene: energy landscape for hydrogen adsorption. Adsorption 15, 312–317 (2009)

    Google Scholar 

  19. Valiev, M., Bylaska, E., Govind, N., Kowalski, K., Straatsma, T., van Dam, H., Wang, D., Nieplocha, J., Apra, E., Windus, T., de Jong, W.: Nwchem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Cramer, C. J.: Essentials of Computational Chemistry : Theories and Models, 2nd edn. Wiley, New York (2004)

    Google Scholar 

  21. MØller, C., Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46(7), 618–622 (Oct 1934)

    Google Scholar 

  22. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. i. the atoms boron through neon and hydrogen. J. Chem. Phys 90(2), 1007–1023 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nouamane Laanait .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Laanait, N. (2013). Molecular Dynamics Simulation of Solvent Correlations. In: Ion Correlations at Electrified Soft Matter Interfaces. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00900-1_6

Download citation

Publish with us

Policies and ethics