Skip to main content

Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow in Unbounded Channels

  • Chapter
  • First Online:
  • 1176 Accesses

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

In Chap. 5 we discussed, in considerable detail, the existence of maximal compact global attractors for bipolar and non-Newtonian flows associated with either (5.2a,b), (5.3a), (5.4), \(\Omega \subseteq {R}^{n}\), n = 2, 3, a bounded domain, or (5.2a,b), (5.3b), (5.4) where \(\Omega = {[0,L]}^{n}\), n = 2, 3, L> 0.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abergel, F.: Attractor for a Navier–Stokes flow in an unbounded domain. RAIRO Modél. Math. Anal. Numér. 23, 357–370 (1989)

    MathSciNet  Google Scholar 

  2. Abergel, F.: Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains. J. Differ. Equat. 83, 85–108 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bae, H.: Existence, regularity, and decay rate of solutions of non-Newtonian flow. J. Math. Anal. Appl. 231, 467–491 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellout, H., Bloom, F.: Steady plane Poiseuille flows of incompressible multipolar fluids. Int. J. Nonlinear Mech. 28, 503–518 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellout, H., Bloom, F., Nec̆as, J.: Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids. Asymptotic Anal. 11, 1–37 (1995)

    Google Scholar 

  6. Bloom, F., Hao, W.: The L 2 squeezing property for nonlinear bipolar viscous fluids. Differ. Equat. Dynam. Syst. 6, 513–542 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloom, F., Hao, W.: Inertial manifolds of incompressible nonlinear bipolar viscous fluids. Quart. Appl. Math. LIV, 501–539 (1996)

    Google Scholar 

  8. Bloom, F., Hao, W.: Regularization of a non-Newtonian fluid in an unbounded channel: existence and uniqueness of solutions. Nonlinear Anal. TMA 44, 281–309 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bloom, F., Hao, W.: Regularization of a non-Newtonian system in an unbounded channel: existence of a maximal compact attractor. Nonlinear Anal. TMA 43, 743–766 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bloom, F.: Lower semicontinuity of the attractors of non-Newtonian fluids. Dynam. Syst. Appl. 4, 567–580 (1995)

    MATH  Google Scholar 

  11. Bloom, F.: Attractors of non-Newtonian fluids. J. Dynam. Differ. Equat. 7, 109–140 (1995)

    Article  MATH  Google Scholar 

  12. Bloom, F.: Linearized stability of the viscous incompressible bipolar equations. Nonlinear Anal. TMA 27, 1013–1030 (1996)

    Article  MATH  Google Scholar 

  13. Bloom, F.: Attractors of bipolar and non-Newtonian viscous fluids. In: Lakshmikantham, V. (ed.) Proceedings of the First World Congress of Nonlinear Analysts, vol. 1, pp. 583–596. Walter de Gruyter, New York (1996)

    Google Scholar 

  14. Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago (1988)

    MATH  Google Scholar 

  15. Constantin, P., Foias, C., Manly, O., Temam, R.: Determining modes and fractal dimension of turbulent flows. J. Fluid Mech. 150, 427–440 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  17. Constantin, P.: A construction of inertial manifolds. In: The Connection Between Infinite-Dimensional and Finite-Dimensional Dynamical Systems. Contemp. Math., vol. 99, pp. 27–62. American Mathematical Society, Providence (1989)

    Google Scholar 

  18. Dong, B., Chen, Z.: Time decay rates of non-Newtonian flows in R + n. J. Math. Anal. Appl. 324, 820–833 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, B., Chen, Z.: Asymptotic stability of non-Newtonian flows with large perturbation in 2. Appl. Math. Comput. 173, 243–250 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, B., Li, Y.: Large time behavior to the system of fluids in 2. J. Math. Anal. Appl. 298, 667–676 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, B.: Decay of solutions to equations modelling incompressible bipolar non-Newtonian fluids. Electron. J. Differ. Equat. 2005, 1–13 (2005)

    Google Scholar 

  22. Dong, B.: Time decay rates of the isotropic non-Newtonian flows in n. Acta Math. Appl. Sinica 23, 99–106 (2005)

    Article  Google Scholar 

  23. Eden, A., Foias, C., Nicolaenko, B., Temam, R.: Inertial Sets for Dissipative Evolution Equations. Preprint, University of Minnesota, Minneapolis (1990): cf. Ensembles inertials pour des équations d’évolution dissipatives. C.R. Acad. Sci. Paris Sér 1 Math. 310, 559–562 (1990)

    Google Scholar 

  24. Foias, C., Sell, G.R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equat. 73, 309–353 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Foias, C., Sell, G.R., Titi, E.: Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations. J. Dynam. Differ. Equat. 1, 199–244 (1989)

    Article  MathSciNet  Google Scholar 

  26. Hao, W.: Long-time behavior of the nonlinear, incompressible, bipolar equations, Ph.D. Thesis, Northern Illinois University, August 1994

    Google Scholar 

  27. Heywood, J.G., Rannacher, R.: On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method. SIAM J. Numer. Anal. 30, 1603–1621 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ju, N.: Existence of a global attractor for the three-dimensional modified Navier–Stokes equations. Nonlinearity 14, 777–786 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kwak, M.: Finite-dimensional inertial forms for the 2D Navier–Stokes equations. Indiana Univ. Math. J. 41, 927–981 (1993)

    Article  MathSciNet  Google Scholar 

  30. Ladyzhenskaya, O.A.: New equations for the description of the viscous incompressible fluids and solvability in the large of the boundary value problems for them. In: Boundary Value Problems of Mathematical Physics V. AMS, Providence (1970)

    Google Scholar 

  31. Luskin, M., Sell, G.R.: Parabolic regularization and inertial manifolds, IMA Preprint. University of Minnesota, Minneapolis (1989)

    Google Scholar 

  32. Liu, H., Wang, Z., Wu, L.: Large time behavior for the non-Newtonian flow in 3. ZAMP 59, 619–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, Y., Zhao, C.: Global attractor for a non-Newtonian system in two-dimensional unbounded domains. Acta Anal. Funct. Appl. 4, 343–349 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Li, Y., Zhao, C.: H 2 compact attractor for a non-Newtonian system in two-dimensional unbounded domains. Nonlinear Anal. TMA 56, 1091–1103 (2004)

    Article  MATH  Google Scholar 

  35. Li, Y., Zhao, C.: A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains. Nonlinear Anal. 60, 476–483 (2005)

    Article  Google Scholar 

  36. Li, Y., Zhao, C., Zhou, S.: Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid. J. Math. Anal. Appl. 325, 1350–1362 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Y., Zhao, C., Zhou, S.: Uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid. Appl. Math. Comput. 201, 688–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Li, Y., Zhao, C., Zhou, S.: Theorems about the attractor for incompressible non-Newtonian flow driven by external forces that are rapidly oscillating in time but have a smooth average. J. Comput. Appl. Math. 220, 129–142 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marion, M.: Approximate inertial manifolds for reaction-diffusion equations in higher space dimensions. J. Dynam. Differ. Equat. 1, 245–267 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Malek, J., Nec̆as, J.: A finite dimensional attractor for three-dimensional flow of incompressible fluids. J. Differ. Equat. 127, 498–518 (1996)

    Google Scholar 

  41. Malek, J., Prazák, D.: Finite fractal dimension of the global attractor for a class of non-Newtonian fluids. Appl. Math Lett. 13, 105–110 (2000)

    Article  MATH  Google Scholar 

  42. Malek, J., Prazák, D.: Large time behavior via the method of l-trajectories. J. Differ. Equat. 181, 243–279 (2002)

    Article  MATH  Google Scholar 

  43. Nec̆asova, S., Penel, P.: L 2 decay for weak solutions to equations of non-Newtonian incompressible fluids in the whole space. Nonlinear Anal. TMA 47, 4181–4192 (2000)

    Google Scholar 

  44. Nec̆asova, S., Penel, P.: Incompressible non-Newtonian fluids: time asymptotic behavior of weak solutions. Math. Meth. Appl. Sci. 29, 1615–1630 (2006)

    Google Scholar 

  45. Nec̆asova, S., Penel, P.: Remark on the L 2 decay for weak solutions to the equations of non-Newtonian incompressible fluids in the whole space. Annali Dell’ Universita Di Ferrara 46, 197–207 (2000)

    Google Scholar 

  46. Ou, Y.-R., Sritharan, S.S.: Analysis of regularized Navier–Stokes equations II. Quart. Appl. Math. XLIX, 687–728 (1991)

    Google Scholar 

  47. Sell, G.R., Mallet-Paret, J.: Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Am. Math. Soc. 1, 805–866 (1988)

    Article  MathSciNet  Google Scholar 

  48. Smiley, M.W.: Global attractors and approximate inertial manifolds for nonautonomous dissipative equations. Appl. Anal. 50, 217–241 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sell, G.R., You, Y.: Inertial manifolds: the nonselfadjoint case. J. Differ. Equat. 96, 203–255 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Temam, R.: Induced trajectories and approximate inertial manifolds. RAIRO Modél Math. Anal. Numér. 23, 541–561 (1989)

    MathSciNet  MATH  Google Scholar 

  51. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1997)

    Book  MATH  Google Scholar 

  52. Titi, E.: On approximate inertial manifolds for the Navier–Stokes equations. J. Math. Anal. Appl. 149, 540–557 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhao, C., Zhou, S.: Pullback attractors for a non-autonomous incompressible non-Newtonian fluid. J. Differ. Equat. 238, 394–425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhao, C., Zhou, S., Li, Y.: Uniform attractor for a two-dimensional nonautonomous incompressible non-Newtonian fluid. Appl. Math. Comput. 201, 688–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhao, C., Zhou, S., Li, Y.: Regularity of trajectory attractor and upper semicontinuity of the global attractor for a 2D non-Newtonian fluid. J. Differ. Equat. 247, 2331–2363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bellout, H., Bloom, F. (2014). Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow in Unbounded Channels. In: Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow. Advances in Mathematical Fluid Mechanics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-00891-2_6

Download citation

Publish with us

Policies and ethics