Multi-level Monte Carlo Finite Volume Methods for Uncertainty Quantification in Nonlinear Systems of Balance Laws

  • Siddhartha Mishra
  • Christoph Schwab
  • Jonas Šukys
Chapter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 92)

Abstract

A mathematical formulation of conservation and of balance laws with random input data, specifically with random initial conditions, random source terms and random flux functions, is reviewed. The concept of random entropy solution is specified. For scalar conservation laws in multi-dimensions, recent results on the existence and on the uniqueness of random entropy solutions with finite variances are presented. The combination of Monte Carlo sampling with Finite Volume Method discretization in space and time for the numerical approximation of the statistics of random entropy solutions is proposed. The finite variance of random entropy solutions is used to prove asymptotic error estimates for combined Monte Carlo Finite Volume Method discretizations of scalar conservation laws with random inputs. A Multi-Level extension of combined Monte Carlo Finite Volume Method (MC-FVM) discretizations is proposed and asymptotic error bounds are presented in the case of scalar, nonlinear hyperbolic conservation laws. Sparse tensor constructions for the computation of compressed approximations of two- and k-point space-time correlation functions of random entropy solutions are introduced.Asymptotic error versus work estimates indicate superiority of Multi-Level versions of MC-FVM over the plain MC-FVM, under comparable assumptions on the random input data. In particular, it is shown that these compressed sparse tensor approximations converge essentially at the same rate as the MLMC-FVM estimators for the mean solutions.Extensions of the proposed algorithms to nonlinear, hyperbolic systems of balance laws are outlined. Multiresolution discretizations of random source terms which are exactly bias-free are indicated.Implementational aspects of these Multi-Level Monte Carlo Finite Volume methods, in particular results on large scale random number generation, scalability and resilience on emerging massively parallel computing platforms, are discussed.

Keywords

Monte Carlo Finite Volume Method Shallow Water Equation Polynomial Chaos Expansion Stochastic Collocation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to express their gratitude to Mr. Luc Grosheintz, a student in the ETH Zürich MSc Applied Mathematics curriculum for performing the numerics for the sparse two-point correlation computations reported in Sect. 6.8. The authors thank the systems support at ETH Zürich parallel Compute Cluster BRUTUS [49] for their support in the production runs for the present paper, and the staff at the Swiss National Supercomputing center (CSCS) [50] at Lugano for their assistance in the large scale Euler and MHD simulations.

References

  1. 1.
    R. Abgrall. A simple, flexible and generic deterministic approach to uncertainty quantification in non-linear problems. Rapport de Recherche, INRIA, 2007.Google Scholar
  2. 2.
    ALSVID. Available from http://folk.uio.no/mcmurry/amhd.
  3. 3.
    ALSVID-UQ. Available from http://www.sam.math.ethz.ch/alsvid-uq.
  4. 4.
    K. Aziz and A. Settari. Fundamentals of petroleum reservoir simulation. Applied Science Publishers, London, 1979.Google Scholar
  5. 5.
    A. Barth, Ch. Schwab and N. Zollinger. Multilevel MC Method for Elliptic PDEs with Stochastic Coefficients. Numerische Mathematik, Volume 119(1), pp. 123–161, 2011.Google Scholar
  6. 6.
    T. J. Barth. Numerical methods for gas-dynamics systems on unstructured meshes. An Introduction to Recent Developments in Theory and Numerics of Conservation Laws, pp. 195–285. Lecture Notes in Computational Science and Engineering volume 5, Springer, Berlin. Eds: D. Kroner, M. Ohlberger, and Rohde, C., 1999.Google Scholar
  7. 7.
    P. D. Bates, S. N. Lane and R. I. Ferguson. Parametrization, Validation and Uncertainty analysis of CFD models of fluvial and flood hydraulics in natural environments. Computational Fluid Dynamics: Applications in environmental hydraulics, John Wiley and sons, pp. 193–212, 2005.Google Scholar
  8. 8.
    Q. Y. Chen, D. Gottlieb and J. S. Hesthaven. Uncertainty analysis for steady flow in a dual throat nozzle. J. Comput. Phys, 204, pp. 378–398, 2005.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    B. Cockburn and C-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput., 52, pp. 411–435, 1989.Google Scholar
  10. 10.
    Constantine M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics (2nd Ed.). Springer Verlag, 2005.Google Scholar
  11. 11.
    Josef Dick, Franes Y. Kuo and Ian H. Sloan. High dimensional integration: the Quasi Monte-Carlo way. Acta Numerica, to appear, 2013.Google Scholar
  12. 12.
    R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods, in Handbook of numerical analysis, Vol. VII, pp. 713–1020, North-Holland, Amsterdam, 2000.Google Scholar
  13. 13.
    P. F. Fisher and N. J. Tate. Causes and consequences of error in digital elevation models. Prog. in Phy. Geography, 30(4), pp. 467–489, 2006.CrossRefGoogle Scholar
  14. 14.
    G. Fishman. Monte Carlo. Springer, 1996.Google Scholar
  15. 15.
    U.S. Fjordholm, S. Mishra, and E. Tadmor. Well-balanced, energy stable schemes for the shallow water equations with varying topology. J. Comput. Phys., 230, pp. 5587–5609, 2011.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    F. Fuchs, A. D. McMurry, S. Mishra, N. H. Risebro and K. Waagan. Approximate Riemann solver based high-order finite volume schemes for the Godunov-Powell form of ideal MHD equations in multi-dimensions. Comm. Comput. Phys., 9, pp. 324–362, 2011.MathSciNetGoogle Scholar
  17. 17.
    M. Giles. Improved multilevel Monte Carlo convergence using the Milstein scheme. Preprint NA-06/22, Oxford computing lab, Oxford, U.K, 2006.Google Scholar
  18. 18.
    M. Giles. Multilevel Monte Carlo path simulation. Oper. Res., 56, pp. 607–617, 2008.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    E. Godlewski and P.A. Raviart. Hyperbolic Systems of Conservation Laws. Mathematiques et Applications, Ellipses Publ., Paris, 1991.Google Scholar
  20. 20.
    S. Gottlieb, C. W. Shu and E. Tadmor. High order time discretizations with strong stability property. SIAM. Review, 43, pp. 89–112, 2001.MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    A. Harten, B. Engquist, S. Osher and S. R. Chakravarty. Uniformly high order accurate essentially non-oscillatory schemes. J. Comput. Phys., pp. 231–303, 1987s.Google Scholar
  22. 22.
    S. Heinrich. Multilevel Monte Carlo methods. Large-scale scientific computing, Third international conference LSSC 2001, Sozopol, Bulgaria, 2001, Lecture Notes in Computer Science, Vol 2170, pp. 58–67, Springer Verlag, 2001.Google Scholar
  23. 23.
    P. L’Ecuyer and F. Panneton. Fast Random Number Generators Based on Linear Recurrences Modulo 2: Overview and Comparison. Proceedings of the 2005 Winter Simulation Conference, pp. 110–119, IEEE press, 2005.Google Scholar
  24. 24.
    P. L’Ecuyer and F. Panneton. Fast Random Number Generators Based on Linear Recurrences Modulo 2. ACM Trans. Math. Software, 32, pp. 1–16, 2006.MathSciNetCrossRefGoogle Scholar
  25. 25.
    R.A. LeVeque. Numerical Solution of Hyperbolic Conservation Laws. Cambridge Univ. Press 2005.Google Scholar
  26. 26.
    R. LeVeque, D. George and M. Berger. Tsunami modeling with adaptively refined finite volume methods. Acta Numerica, 20, pp. 211–289, 2011.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    G. Lin, C.H. Su and G. E. Karniadakis. The stochastic piston problem. PNAS 101, pp. 15840–15845, 2004.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comp. Phys, 228, pp. 3084–3113, 2009.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Modeling and Computer Simulation, 8, pp. 3–30, Jan. 1998.CrossRefMATHGoogle Scholar
  30. 30.
    S. Mishra and Ch. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comp. 280(81), pp. 1979–2018, 2012.MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Mishra, N.H. Risebro, Ch. Schwab and S. Tokareva. Numerical solution of scalar conservation laws with random flux functions. SAM Technical Report No. 2012-35, in review, 2012. Also available from http://www.sam.math.ethz.ch/sam_reports/index.php?id=2012-35.
  32. 32.
    S. Mishra, Ch. Schwab and J. Šukys. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comp. Phys., 231(8), pp. 3365–3388, 2012.Google Scholar
  33. 33.
    S. Mishra, Ch. Schwab, and J. Šukys. Multi-level Monte Carlo Finite Volume methods for shallow water equations with uncertain topography in multi-dimensions. SIAM J. Sci. Comput., 34(6), pp. B761–B784, 2012.CrossRefMATHGoogle Scholar
  34. 34.
    S. Pauli and P. Arbenz and Ch. Schwab. Intrinsic fault tolerance of multi level Monte Carlo methods. SAM Technical Report 2012-24, Seminar für Angewandte Mathematik ETH Zürich, 2012. Also available from http://www.sam.math.ethz.ch/sam_reports/index.php?id=2012-24.
  35. 35.
    G. Poette, B. Després and D. Lucor. Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, pp. 2443–2467, 2009.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    G.D. Prato and J. Zabcyk, Stochastic Equations in infinite dimensions, Cambridge Univ. Press, 1991.Google Scholar
  37. 37.
    G. Schmidlin. Fast solution algorithms for integral equations in \({\mathbb{R}}^{3}\) . PhD dissertation ETH Zürich No. 15016, 2003.Google Scholar
  38. 38.
    G. Schmidlin and Ch. Schwab. Wavelet Galerkin BEM on unstructured meshes by aggregation. LNCSE 20, pp. 369–278, Springer Lecture Notes in CSE, Springer Verlag, Berlin Heidelberg New York, 2002.Google Scholar
  39. 39.
    Ch. Schwab and S. Tokareva. High order approximation of probabilistic shock profiles in hyperbolic conservation laws with uncertain initial data. ESAIM: Mathematical Modelling and Numerical Analysis, ESAIM: M2AN 47, 807–835 (2013) DOI: 10.1051/m2an/2012060, www.esaim-m2an.org.
  40. 40.
    C. W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory schemes - II. J. Comput. Phys., 83, pp. 32–78, 1989.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    C. W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Technical report, NASA, 1997.Google Scholar
  42. 42.
    J. Šukys, S. Mishra, and Ch. Schwab. Static load balancing for multi-level Monte Carlo finite volume solvers. PPAM 2011, Part I, LNCS 7203, pp. 245–254. Springer, Heidelberg, 2012.Google Scholar
  43. 43.
    J. Tryoen, O. Le Maitre, M. Ndjinga and A. Ern. Intrusive projection methods with upwinding for uncertain non-linear hyperbolic systems. Preprint, 2010.Google Scholar
  44. 44.
    T. von Petersdorff and Ch. Schwab. Sparse Finite Element Methods for Operator Equations with Stochastic Data, Applications of Mathematics 51(2), pp. 145–180, 2006.MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    X. Wan and G. E. Karniadakis. Long-term behaviour of polynomial chaos in stochastic flow simulations. Comput. Meth. Appl. Mech. Engg. 195, pp. 5582–5596, 2006.MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    B. P. Welford. Note on a Method for Calculating Corrected Sums of Squares and Products. Technometrics, 4, pp. 419–420, 1962.MathSciNetCrossRefGoogle Scholar
  47. 47.
    J. A. S. Witteveen, A. Loeven, H. Bijl An adaptive stochastic finite element approach based on Newton-Cotes quadrature in simplex elements. Comput. Fluids, 38, pp. 1270–1288, 2009.MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput., 27, pp. 1118–1139, 2005.MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
  50. 50.
    Cray XE6, Swiss National Supercomputing Center (CSCS), Lugano, www.cscs.ch.
  51. 51.
    MPI: A Message-Passing Interface Standard. Version 2.2, 2009, available from: http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.
  52. 52.
    Open MPI: Open Source High Performance Computing. Available from http://www.open-mpi.org/.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Siddhartha Mishra
    • 1
  • Christoph Schwab
    • 2
  • Jonas Šukys
    • 3
  1. 1.SAM, ETH ZürichZürichSwitzerland
  2. 2.SAM, ETH ZürichZürichSwitzerland
  3. 3.SAM, ETH ZürichZürichSwitzerland

Personalised recommendations