Non-intrusive Uncertainty Propagation with Error Bounds for Conservation Laws Containing Discontinuities

  • Timothy Barth
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 92)


The propagation of statistical model parameter uncertainty in the numerical approximation of nonlinear conservation laws is considered. Of particular interest are nonlinear conservation laws containing uncertain parameters resulting in stochastic solutions with discontinuities in both physical and random variable dimensions. Using a finite number of deterministic numerical realizations, our objective is the accurate estimation of output uncertainty statistics (e.g. expectation and variance) for quantities of interest such as functionals, graphs, and fields. Given the error in numerical realizations, error bounds for output statistics are derived that may be numerically estimated and included in the calculation of output statistics. Unfortunately, the calculation of output statistics using classical techniques such as polynomial chaos, stochastic collocation, and sparse grid quadrature can be severely compromised by the presence of discontinuities in random variable dimensions. An alternative technique utilizing localized piecewise approximation combined with localized subscale recovery is shown to significantly improve the quality of calculated statistics when discontinuities are present. The success of this localized technique motivates the development of the HYbrid Global and Adaptive Polynomial (HYGAP) method described in Sect. 4.4. HYGAP employs a high accuracy global approximation when the solution data varies smoothly in a random variable dimension and local adaptive polynomial approximation with local postprocessing when the solution is non-smooth. To illustrate strengths and weaknesses of classical and newly proposed uncertainty propagation methods, a number of computational fluid dynamics (CFD) model problems containing various sources of parameter uncertainty are calculated including 1-D Burgers’ equation, subsonic and transonic flow over 2-D single-element and multi-element airfoils, transonic Navier-Stokes flow over a 3-D ONERA M6 wing, and supersonic Navier-Stokes flow over a greatly simplified Saturn-V rocket.



The author acknowledges the support of the NASA Fundamental Aeronautics Program for supporting this work. Computing resources have been provided by the NASA Ames Advanced Supercomputing Center.


  1. 1.
    Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. pp. 1005–1034 (2007)Google Scholar
  2. 2.
    Baldwin, B.S., Barth, T.J.: A one-equation turbulence transport model for high Reynolds number wall-bounded flows. Tech. Rep. TM-102847, NASA Ames Research Center, Moffett Field, CA (1990)Google Scholar
  3. 3.
    Barth, T.J.: Numerical methods for gasdynamic systems on unstructured meshes. In: Kröner, Ohlberger, Rohde (eds.) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws, Lecture Notes in Computational Science and Engineering, vol. 5, pp. 195–285. Springer-Verlag, Heidelberg (1998)Google Scholar
  4. 4.
    Becker, R., Rannacher, R.: Weighted a posteriori error control in FE methods. In: Proc. ENUMATH-97, Heidelberg. World Scientific Pub., Singapore (1998)Google Scholar
  5. 5.
    Brass, H., Föster, K.J.: On the estimation of linear functionals. Analysis 7, 237–258 (1987)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brezinski, C., Zaglia, M.R.: Extrapolation Methods. North Holland (1991)Google Scholar
  7. 7.
    Chan, T., Shen, J.: Image Processing and Analysis. SIAM (2005)Google Scholar
  8. 8.
    Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cockburn, B., Hou, S., Shu, C.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp. 54, 545–581 (1990)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cockburn, B., Luskin, M., Shu, C.W., Süli, E.: Enhanced accuracy by postprocessing for finite element methods for hyperbolic equations. Math. Comp. 72, 577–606 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to numerical methods for differential equations. Acta Numerica pp. 105–158 (1995)Google Scholar
  12. 12.
    Ghamen, R., Spanos, P.: Stochastic Finite Elements. Dover Pub. Inc., Mineola, New York (1991)Google Scholar
  13. 13.
    Harris, C.: Two-dimensional aerodynamic characteristics of the NACA 0012 airfoil in the Langley 8-foot transonic pressure tunnel. Tech. Rep. TM-81927, NASA Langley Research Center, Hampton, VA (1981)Google Scholar
  14. 14.
    Hildebrand, F.: Introduction to Numerical Analysis. McGraw-Hill, New York (1956)zbMATHGoogle Scholar
  15. 15.
    Holtz, M.: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance, Lecture Notes in Computational Science and Engineering, vol. 77. Springer-Verlag, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Jespersen, D., Pulliam, T., Buning, P.: Recent enhancements to OVERFLOW. Tech. Rep. 97-0644, AIAA, Reno, NV (1997)Google Scholar
  17. 17.
    Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comp. Phys. pp. 202–228 (1996)Google Scholar
  18. 18.
    Larson, M., Barth, T.: A posteriori error estimation for adaptive discontinuous Galerkin approximations of hyperbolic systems. In: B. Cockburn, C.W. Shu, G. Karniadakis (eds.) Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer-Verlag, Heidelberg (2000)Google Scholar
  19. 19.
    van Leer, B.: Towards the ultimate conservative difference schemes V. A second order sequel to Godunov’s method. J. Comp. Phys. 32, 101–136 (1979)Google Scholar
  20. 20.
    van Leer, B.: Upwind-difference schemes for aerodynamics problems governed by the Euler equations. AMS Pub., Providence, Rhode Island (1985)Google Scholar
  21. 21.
    LeSaint, P., Raviart, P.: On a finite element method for solving the neutron transport equation. In: C. de Boor (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press (1974)Google Scholar
  22. 22.
    Loeven, G., Bijl, H.: Probabilistic collocation used in a two-step approach for efficient uncertainty quantification in computational fluid dynamics. Comp. Modeling in Engrg. Sci. 36(3), 193–212 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mathelin, L., Hussaini, M.Y., Zang, T.: Stochastic approaches to uncertainty quantification in CFD simulations. Num. Alg. pp. 209–236 (2005)Google Scholar
  24. 24.
    Metropolis, N., Ulam, S.: The Monte Carlo method. J. Amer. Stat. Assoc. 44(247), 335–341 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Novak, E., Ritter, K.: High dimensional integration of smooth functions over cubes. Numer. Math. 75(1), 79–97 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Piessens, R., de Doncker-Kapenga, E., Überhuber, C., Kahaner, D.: QUADPACK: A Subroutine Package for Automatic Integration. Springer Series in Computational Mathematics. Springer-Verlag (1983)CrossRefzbMATHGoogle Scholar
  29. 29.
    Prudhomme, S., Oden, J.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comp. Meth. Appl. Mech. and Eng. pp. 313–331 (1999)Google Scholar
  30. 30.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos National Laboratory, Los Alamos, New Mexico (1973)Google Scholar
  31. 31.
    Richardson, L., Gaunt, J.: The deferred approach to the limit. Trans. Royal Soc. London, Series A 226, 299–361 (1927)zbMATHGoogle Scholar
  32. 32.
    Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Annals of Mathematical Statistics 27, 832–837 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sack, R., Donovan, A.: An algorithm for gaussian quadrature given modified moments. Num. Math. pp. 465–478 (1971)Google Scholar
  34. 34.
    Schmidtt, V., Charpin, F.: Pressure distributions on the ONERA M6 wing at transonic mach numbers. Tech. Rep. AGARD AR-138, Advisory Group for Aerospace Research and Development (1979)Google Scholar
  35. 35.
    Sethian, J.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  36. 36.
    Sethian, J.A.: Image processing via level set curvature flow. Proc. Natl. Acad. Sci. USA 92, 7045–7050 (1995)MathSciNetGoogle Scholar
  37. 37.
    Shu, C.W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, Deconinck (eds.) High-Order Discretization Methods in Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer-Verlag, Heidelberg (1999)CrossRefGoogle Scholar
  38. 38.
    Smolyak, S.: Quadrature and interpolation formulas for tensor products of centain classes of functions. Dok. Akad. Nauk SSSR 4, 240–243 (1993)Google Scholar
  39. 39.
    Tatang, M.A.: Direct incorporation of uncertainty in chemical and environmental engineering systems. Ph.D. thesis, MIT (1994)Google Scholar
  40. 40.
    Wan, X., Karniadakis, G.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. pp. 617–642 (2005)Google Scholar
  41. 41.
    Wheeler, J.: Modified moments and gaussian quadratures. Rocky Mtn. J. Math. pp. 287–296 (1974)Google Scholar
  42. 42.
    Wiener, N.: The homogeneous chaos. Am. J. Math. pp. 897–936 (1938)Google Scholar
  43. 43.
    Xiu, D., Karniadakis, G.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. pp. 619–644 (2002)Google Scholar
  44. 44.
    Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique. Int. J. Numer. Meth. Engrg. 33, 1331–1364 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.NASA Ames Research CenterMoffett FieldUSA

Personalised recommendations