Skip to main content

Protein Folding: An Introduction

  • Chapter
  • First Online:
Protein Folding

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSPROTEIN))

Abstract

We have come a long way since coining of the term protein and the early findings that proteins are charged macromolecules composed of strings of amino acids linked by peptide bonds. Today, structural biologists have technologies that allow in many cases to achieve an atomic-level understanding of protein structure, dynamics and folding; protein physics approaches have made substantial contributions to understanding the intricacies of folding mechanisms and its energetics; biochemists have developed conceptual frameworks to relate protein structure with biological functions. Yet, despite the efforts of a vibrant community of protein scientists, a lot of questions remain to be answered in the field of protein structure and folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tanford C, Reynolds J (2001) Nature’s robots—a history of proteins. Oxford

    Google Scholar 

  2. Anson ML, Mirsky AE (1930) The reversibility of protein coagulation. J Phys Chem 35:185–193

    Google Scholar 

  3. Astbury WT, Woods HJ (1930) The X-ray interpretation of the structure and elastic properties of hair keratin. Nature 126:913

    CAS  Google Scholar 

  4. Cohen C (1998) Why fibrous proteins are romantic. J Struct Biol 122:3–16

    CAS  PubMed  Google Scholar 

  5. Eisenberg D (2003) The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proc Natl Acad Sci 100:11207–11210

    CAS  PubMed  Google Scholar 

  6. Strandberg B (2009) Building the ground for the first two protein structures: myoglobin and haemoglobin (Chap. 1). J Mol Biol 392:2–10

    Google Scholar 

  7. Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    CAS  PubMed  Google Scholar 

  8. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hou J, Sims GE, Zhang C, Kim S-H (2003) A global representation of the protein fold space. Proc Natl Acad Sci 100:2386–2390

    CAS  PubMed  Google Scholar 

  10. Schaeffer RD, Daggett V (2011) Protein folds and protein folding. Protein Eng Des Sel PEDS 24:11–19

    CAS  PubMed  Google Scholar 

  11. Richardson JS (1977) [beta]-Sheet topology and the relatedness of proteins. Nature 268:495–500

    CAS  PubMed  Google Scholar 

  12. Mansfield ML (1994) Are there knots in proteins? Nat Struct Mol Biol 1:213–214

    CAS  Google Scholar 

  13. Taylor WR (2000) A deeply knotted protein structure and how it might fold. Nature 406:916–919

    CAS  PubMed  Google Scholar 

  14. Koniaris K, Muthukumar M (1991) Knottedness in ring polymers. Phys Rev Lett 66:2211–2214

    CAS  PubMed  Google Scholar 

  15. Bölinger D, Sułkowska JI, Hsu H-P, Mirny LA, Kardar M, Onuchic JN, Virnau P (2010) A Stevedore’s protein knot. PLoS Comput Biol 6:e1000731

    PubMed  PubMed Central  Google Scholar 

  16. King NP, Yeates EO, Yeates TO (2007) Identification of rare slipknots in proteins and their implications for stability and folding. J Mol Biol 373:153–166

    CAS  PubMed  Google Scholar 

  17. Jamroz M, Niemyska W, Rawdon EJ, Stasiak A, Millett KC, Sułkowski P, Sulkowska JI (2015) KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res 43:D306–D314

    CAS  PubMed  Google Scholar 

  18. Lua RC, Grosberg AY (2006) Statistics of knots, geometry of conformations, and evolution of proteins. PLoS Comput Biol 2:e45

    PubMed  PubMed Central  Google Scholar 

  19. Virnau P, Mirny LA, Kardar M (2006) Intricate knots in proteins: function and evolution. PLoS Comput Biol 2:e122

    PubMed  PubMed Central  Google Scholar 

  20. Sułkowska JI, Rawdon EJ, Millett KC, Onuchic JN, Stasiak A (2012) Conservation of complex knotting and slipknotting patterns in proteins. Proc Natl Acad Sci 109:E1715–E1723

    PubMed  Google Scholar 

  21. Soler MA, Nunes A, Faísca PFN (2014) Effects of knot type in the folding of topologically complex lattice proteins. J Chem Phys 141:025101

    PubMed  Google Scholar 

  22. Nureki O, Shirouzu M, Hashimoto K, Ishitani R, Terada T, Tamakoshi M, Oshima T, Chijimatsu M, Takio K, Vassylyev DG, Shibata T, Inoue Y, Kuramitsu S, Yokoyama S (2002) An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr Sect D 58:1129–1137

    Google Scholar 

  23. Jacobs SA, Harp JM, Devarakonda S, Kim Y, Rastinejad F, Khorasanizadeh S (2002) The active site of the SET domain is constructed on a knot. Nat Struct Mol Biol 9:833–838

    CAS  Google Scholar 

  24. Sułkowska JI, Sułkowski P, Szymczak P, Cieplak M (2008) Stabilizing effect of knots on proteins. Proc Natl Acad Sci 105:19714–19719

    PubMed  Google Scholar 

  25. Alam MT, Yamada T, Carlsson U, Ikai A (2002) The importance of being knotted: effects of the C-terminal knot structure on enzymatic and mechanical properties of bovine carbonic anhydrase II 1. FEBS Lett 519:35–40

    CAS  PubMed  Google Scholar 

  26. Soler MA, Faísca PFN (2013) Effects of knots on protein folding properties. PLoS ONE 8:e74755

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Uversky VN (2014) Intrinsically disordered proteins. Springer, New York

    Google Scholar 

  28. Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P (2014) Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 114:6661–6714

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Riback JA, Bowman MA, Zmyslowski AM, Knoverek CR, Jumper JM, Hinshaw JR, Kaye EB, Freed KF, Clark PL, Sosnick TR (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358:238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    PubMed  PubMed Central  Google Scholar 

  31. Kumar S, Nussinov R (2002) Close-range electrostatic interactions in proteins. Chembiochem Eur J Chem Biol 3:604–617

    CAS  Google Scholar 

  32. Kessel A, Ben-Tal N (2011) Introduction to proteins: structure, function, and motion. CRC; London: Taylor & Francis [distributor], Boca Raton

    Google Scholar 

  33. Williamson MP (2012) How proteins work. Garland science, London: Taylor & Francis [distributor], New York

    Google Scholar 

  34. Gomes CM, Wittung-Stafshede P (2011) Protein folding and metal ions: mechanisms, biology and disease. CRC Press, Boca Raton

    Google Scholar 

  35. Gomes CM (2012) Protein misfolding in disease and small molecule therapies. Curr Top Med Chem 12:2460–2469

    CAS  PubMed  Google Scholar 

  36. Leandro P, Gomes CM (2008) Protein misfolding in conformational disorders: rescue of folding defects and chemical chaperoning. Mini Rev Med Chem 8:901–911

    CAS  PubMed  Google Scholar 

  37. Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci USA 47:1309–1314

    CAS  PubMed  Google Scholar 

  38. Anfinsen CB, Sela M, Cooke JP (1962) The reversible reduction of disulphide bonds in polyalanyl ribonuclease. J Biol Chem 237:1825–1831

    CAS  PubMed  Google Scholar 

  39. Sela M, Anfinsen CB (1957) Some spectrophotometric and polarimetric experiments with ribonuclease. Biochem Biophys Acta 24:229–235

    CAS  PubMed  Google Scholar 

  40. Sela M, Anfinsen CB, Harrington WF (1957) The correlation of ribonuclease activity with specific aspects of tertiary structure. Biochem Biophys Acta 26:502–512

    CAS  PubMed  Google Scholar 

  41. Sela M, White FH Jr, Anfinsen CB (1957) Reductive cleavage of disulphide bridges in ribonuclease. Science 125:691–692

    CAS  PubMed  Google Scholar 

  42. Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    CAS  PubMed  Google Scholar 

  43. Pace CN, Shaw KL (2000) Linear extrapolation method of analyzing solvent denaturation curves. Proteins Suppl 4:1–7

    Google Scholar 

  44. Shaw KL, Scholtz JM, Pace CN, Grimsley GR (2009) Determining the conformational stability of a protein using urea denaturation curves. Methods Mol Biol 490:41–55

    Google Scholar 

  45. Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531:100–109

    CAS  PubMed  Google Scholar 

  46. Taverna DM, Goldstein RA (2002) Why are proteins marginally stable? Proteins 46:105–109

    CAS  PubMed  Google Scholar 

  47. Stetter KO (1996) Hyperthermophilic procaryotes. FEMS Microbiol Rev 18:149–158

    CAS  Google Scholar 

  48. Madigan MT, Orent A (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2:265–269

    CAS  PubMed  Google Scholar 

  49. Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol Off J Span Soc Microbiol 9:199–206

    CAS  Google Scholar 

  50. Mehta R, Singhal P, Singh H, Damle D, Sharma AK (2016) Insight into thermophiles and their wide-spectrum applications. 3 Biotech 6:81–81

    Google Scholar 

  51. Marx V (2016) PCR: the price of infidelity. Nat Meth 13:475–479

    CAS  Google Scholar 

  52. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb J-F, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NSM, Weidman JF, Fuhrmann JL, Nguyen D, Utterback TR, Kelley JM, Peterson JD, Sadow PW, Hanna MC, Cotton MD, Roberts KM, Hurst MA, Kaine BP, Borodovsky M, Klenk H-P, Fraser CM, Smith HO, Woese CR, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058

    CAS  PubMed  Google Scholar 

  53. Land M, Hauser L, Jun S-R, Nookaew I, Leuze MR, Ahn T-H, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW (2015) Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation. Proteins 79:1089–1108

    CAS  PubMed  Google Scholar 

  55. Scandurra R, Consalvi V, Chiaraluce R, Politi L, Engel PC (2000) Protein stability in extremophilic archaea. Front Biosci J Virtual Libr 5:D787–D795

    CAS  Google Scholar 

  56. Siddiqui KS (2017) Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 37:309–322

    PubMed  Google Scholar 

  57. Anson ML (1945) Protein denaturation and the properties of protein groups. Adv Protein Chem 2:361–386

    CAS  Google Scholar 

  58. Chan HS, Shimizu S, Kaya H (2004) Cooperativity principles in protein folding. Methods Enzymol 380:350–379

    CAS  PubMed  Google Scholar 

  59. Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    CAS  PubMed  Google Scholar 

  60. Ptitsyn OB (1995) How the molten globule became. Trends Biochem Sci 20:376–379

    CAS  PubMed  Google Scholar 

  61. Lumry R, Biltonen R, Brandts JF (1966) Validity of the “two-state” hypothesis for conformational transitions of proteins. Biopolymers 4:917–944

    CAS  PubMed  Google Scholar 

  62. Fersht A (1999) Structure and mechanism in protein science: a guide to enzyme catalysis and protein folding. Freeman, W. H

    Google Scholar 

  63. Chan HS, Zhang Z, Wallin S, Liu Z (2011) Cooperativity, local-nonlocal coupling, and nonnative interactions: principles of protein folding from coarse-grained models. Annu Rev Phys Chem 62:301–326

    CAS  PubMed  Google Scholar 

  64. Krishna MMG, Englander SW (2005) The N-terminal to C-terminal motif in protein folding and function. Proc Natl Acad Sci USA 102:1053–1058

    CAS  PubMed  Google Scholar 

  65. Krobath H, Rey A, Faisca PFN (2015) How determinant is N-terminal to C-terminal coupling for protein folding? Phys Chem Chem Phys 17:3512–3524

    CAS  PubMed  Google Scholar 

  66. Krobath H, Estácio SG, Faísca PFN, Shakhnovich EI (2012) Identification of a conserved aggregation-prone intermediate state in the folding pathways of Spc-SH3 amyloidogenic variants. J Mol Biol 422:705–722

    CAS  PubMed  Google Scholar 

  67. Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN (2017) A tale of two tails: the importance of unstructured termini in the aggregation pathway of β2-microglobulin. Proteins Struct Funct Bioinf 85:2045–2057

    CAS  Google Scholar 

  68. Levinthal C (1968) Are there pathways for protein folding? J Chim Phys 65:44–45

    Google Scholar 

  69. Baldwin RL (1975) Intermediates in protein folding reactions and the mechanism of protein folding. Annu Rev Biochem 44:453–475

    CAS  PubMed  Google Scholar 

  70. Wang Z, Mottonen J, Goldsmith EJ (1996) Kinetically controlled folding of the serpin plasminogen activator inhibitor 1. Biochemistry 35:16443–16448

    CAS  PubMed  Google Scholar 

  71. Levinthal C (1969) How to fold graciously. In: Debrunnder JTP, Munck E (eds) Mossbauer spectroscopy in biological systems: proceedings of a meeting held at Allerton House, Monticello, Illinois, University of Illinois Press

    Google Scholar 

  72. Wetlaufer DB (1973) Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci 70:697–701

    CAS  PubMed  Google Scholar 

  73. Karplus M, Weaver DL (1979) Diffusion–collision model for protein folding. Biopolymers 18:1421–1437

    CAS  Google Scholar 

  74. Dill KA (1985) Theory for the folding and stability of globular proteins. Biochemistry 24:1501–1509

    CAS  PubMed  Google Scholar 

  75. Jackson SE (1998) How do small single-domain proteins fold? Fold Des 3:R81–R91

    CAS  PubMed  Google Scholar 

  76. Jackson SE, Fersht AR (1991) Folding of chymotrypsin inhibitor 2. 1. Evid Two-state Transit Biochem 30:10428–10435

    CAS  Google Scholar 

  77. Tsong TY, Baldwin RL, McPhie P, Elson EL (1972) A sequential model of nucleation-dependent protein folding: kinetic studies of ribonuclease A. J Mol Biol 63:453–469

    CAS  PubMed  Google Scholar 

  78. Abkevich VI, Gutin AM, Shakhnovich EI (1994) Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33:10026–10036

    CAS  PubMed  Google Scholar 

  79. Itzhaki LS, Otzen DE, Fersht AR (1995) The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding. J Mol Biol 254:260–288

    CAS  PubMed  Google Scholar 

  80. Weikl TR, Dill KA (2007) Transition-states in protein folding kinetics: the structural interpretation of φ values. J Mol Biol 365:1578–1586

    CAS  PubMed  Google Scholar 

  81. Fersht AR (1995) Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications. Proc Natl Acad Sci 92:10869–10873

    CAS  PubMed  Google Scholar 

  82. Faísca PFN (2009) The nucleation mechanism of protein folding: a survey of computer simulation studies. J Phys Condens Matter 21:373102

    PubMed  Google Scholar 

  83. Bryngelson JD, Wolynes PG (1987) Spin glasses and the statistical mechanics of protein folding. Proc Natl Acad Sci 84:7524–7528

    CAS  PubMed  Google Scholar 

  84. Leopold PE, Montal M, Onuchic JN (1992) Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci 89:8721–8725

    CAS  PubMed  Google Scholar 

  85. Onuchic JN, Luthey-Schulten Z, Wolynes PG (1997) Theory of protein folding: the energy landscape perspective. Ann Rev Phys Chem 48:545–600

    CAS  PubMed  Google Scholar 

  86. Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct Funct Bioinf 21:167–195

    CAS  Google Scholar 

  87. Onuchic JN, Wolynes PG (2004) Theory of protein folding. Curr Opin Struct Biol 14:70–75

    CAS  PubMed  Google Scholar 

  88. Dill KA, Bromberg S, Yue K, Chan HS, Ftebig KM, Yee DP, Thomas PD (1995) Principles of protein folding—a perspective from simple exact models. Protein Sci 4:561–602

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Mol Biol 4:10–19

    CAS  Google Scholar 

  90. Chan HS, Dill KA (1998) Protein folding in the landscape perspective: chevron plots and non-arrhenius kinetics. Proteins Struct Funct Bioinf 30:2–33

    CAS  Google Scholar 

  91. Dill KA (1999) Polymer principles and protein folding. Protein Sci 8:1166–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Plaxco KW, Simons KT, Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins (Edited by Wright PE). J Mol Biol 277:985–994

    Google Scholar 

  93. Plaxco KW, Simons KT, Ruczinski I, Baker D (2000) Topology, stability, sequence, and length: defining the determinants of two-state protein folding kinetics. Biochemistry 39:11177–11183

    CAS  PubMed  Google Scholar 

  94. Gromiha MM, Selvaraj S (2001) Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction (Edited by Wright PE). J Mol Biol 310:27–32

    Google Scholar 

  95. Micheletti C (2003) Prediction of folding rates and transition-state placement from native-state geometry. Proteins Struct Funct Bioinf 51:74–84

    CAS  Google Scholar 

  96. Chiti F, Taddei N, White PM, Bucciantini M, Magherini F, Stefani M, Dobson CM (1999) Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Mol Biol 6:1005–1009

    CAS  Google Scholar 

  97. Riddle DS, Grantcharova VP, Santiago JV, Alm E, Ruczinski I, Baker D (1999) Experiment and theory highlight role of native state topology in SH3 folding. Nat Struct Mol Biol 6:1016–1024

    CAS  Google Scholar 

  98. Lindorff-Larsen K, Vendruscolo M, Paci E, Dobson CM (2004) Transition states for protein folding have native topologies despite high structural variability. Nat Struct Mol Biol 11:443–449

    CAS  PubMed  Google Scholar 

  99. Jewett AI, Pande VS, Plaxco KW (2003) Cooperativity, smooth energy landscapes and the origins of topology-dependent protein folding rates. J Mol Biol 326:247–253

    CAS  PubMed  Google Scholar 

  100. Paci E, Lindorff-Larsen K, Dobson CM, Karplus M, Vendruscolo M (2005) Transition state contact orders correlate with protein folding rates. J Mol Biol 352:495–500

    CAS  PubMed  Google Scholar 

  101. Faisca PFN, Ball RC (2002) Topological complexity, contact order, and protein folding rates. J Chem Phys 117:8587–8591

    CAS  Google Scholar 

  102. Kaya H, Chan HS (2003) Contact order dependent protein folding rates: kinetic consequences of a cooperative interplay between favorable nonlocal interactions and local conformational preferences. Proteins Struct Funct Bioinf 52:524–533

    CAS  Google Scholar 

  103. Makarov DE, Plaxco KW (2003) The topomer search model: a simple, quantitative theory of two-state protein folding kinetics. Protein Sci (A Publication of the Protein Society) 12:17–26

    CAS  Google Scholar 

  104. Faísca PFN, Travasso RDM, Parisi A, Rey A (2012) Why do protein folding rates correlate with metrics of native topology? PLoS ONE 7:e35599

    PubMed  PubMed Central  Google Scholar 

  105. Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV (2003) Contact order revisited: influence of protein size on the folding rate. Protein Sci (A Publication of the Protein Society) 12:2057–2062

    CAS  Google Scholar 

  106. Galzitskaya OV, Garbuzynskiy SO, Ivankov DN, Finkelstein AV (2003) Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins Struct Funct Bioinf 51:162–166

    CAS  Google Scholar 

  107. Naganathan AN, Muñoz V (2005) Scaling of folding times with protein size. J Am Chem Soc 127:480–481

    CAS  PubMed  Google Scholar 

  108. De Sancho D, Doshi U, Muñoz V (2009) Protein folding rates and stability: how much is there beyond size? J Am Chem Soc 131:2074–2075

    PubMed  Google Scholar 

  109. Sułkowska Joanna I, Noel Jeffrey K, Ramírez-Sarmiento César A, Rawdon Eric J, Millett Kenneth C, Onuchic José N (2013) Knotting pathways in proteins. Biochem Soc Trans 41:523–527

    PubMed  Google Scholar 

  110. Faísca PFN (2015) Knotted proteins: a tangled tale of structural biology. Comput Struct Biotechnol Jurnal 13:459–468

    Google Scholar 

  111. Jackson SE, Suma A, Micheletti C (2017) How to fold intricately: using theory and experiments to unravel the properties of knotted proteins. Curr Opin Struct Biol 42:6–14

    CAS  PubMed  Google Scholar 

  112. Mallam AL, Jackson SE (2007) A comparison of the folding of two knotted proteins: YbeA and YibK. J Mol Biol 366:650–665

    CAS  PubMed  Google Scholar 

  113. Wallin S, Zeldovich KB, Shakhnovich EI (2007) The folding mechanics of a knotted protein. J Mol Biol 368:884–893

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Škrbić T, Micheletti C, Faccioli P (2012) The role of non-native interactions in the folding of knotted proteins. PLoS Comput Biol 8:e1002504

    PubMed  PubMed Central  Google Scholar 

  115. Soler MA, Faísca PFN (2012) How difficult is it to fold a knotted protein? In silico insights from surface-tethered folding experiments. PLoS ONE 7:e52343

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Beccara S, Škrbić T, Covino R, Micheletti C, Faccioli P (2013) Folding pathways of a knotted protein with a realistic atomistic force field. PLOS Comput Biol 9: e1003002

    PubMed  PubMed Central  Google Scholar 

  117. Sułkowska JI, Sułkowski P, Onuchic J (2009) Dodging the crisis of folding proteins with knots. Proc Natl Acad Sci 106:3119–3124

    PubMed  Google Scholar 

  118. Noel JK, Sułkowska JI, Onuchic JN (2010) Slipknotting upon native-like loop formation in a trefoil knot protein. Proc Natl Acad Sci 107:15403–15408

    CAS  PubMed  Google Scholar 

  119. Noel JK, Onuchic JN, Sulkowska JI (2013) Knotting a protein in explicit solvent. J Phys Chem Lett 4:3570–3573

    CAS  Google Scholar 

  120. Lim NCH, Jackson SE (2015) Mechanistic insights into the folding of knotted proteins in vitro and in vivo. J Mol Biol 427:248–258

    CAS  PubMed  Google Scholar 

  121. Mallam AL, Jackson SE (2012) Knot formation in newly translated proteins is spontaneous and accelerated by chaperonins. Nat Chem Biol 8:147–153

    CAS  Google Scholar 

  122. Bustamante A, Sotelo-Campos J, Guerra DG, Floor M, Wilson CAM, Bustamante C, Báez M (2017) The energy cost of polypeptide knot formation and its folding consequences. Nat Commun 8:1581

    PubMed  PubMed Central  Google Scholar 

  123. Soler MA, Rey A, Faisca PFN (2016) Steric confinement and enhanced local flexibility assist knotting in simple models of protein folding. Phys Chem Chem Phys 18:26391–26403

    CAS  PubMed  Google Scholar 

  124. Niewieczerzal S, Sulkowska JI (2017) Knotting and unknotting proteins in the chaperonin cage: effects of the excluded volume. PLoS ONE 12:e0176744

    PubMed  PubMed Central  Google Scholar 

  125. Mirny L, Shakhnovich E (2001) Evolutionary conservation of the folding nucleus (Edited by Fersht AR). J Mol Biol 308:123–129

    Google Scholar 

  126. Sułkowska JI, Noel JK, Onuchic JN (2012) Energy landscape of knotted protein folding. Proc Natl Acad Sci 109:17783–17788

    PubMed  Google Scholar 

  127. Yu I, Mori T, Ando T, Harada R, Jung J, Sugita Y, Feig M (2016) Biomolecular interactions modulate macromolecular structure and dynamics in atomistic model of a bacterial cytoplasm. eLife 5: e19274. https://doi.org/10.7554/eLife.19274

  128. Bhushan S, Gartmann M, Halic M, Armache J-P, Jarasch A, Mielke T, Berninghausen O, Wilson DN, Beckmann R (2010) α-Helical nascent polypeptide chains visualized within distinct regions of the ribosomal exit tunnel. Nat Struct Mol Biol 17:313

    CAS  Google Scholar 

  129. Chaney JL, Clark PL (2015) Roles for synonymous codon usage in protein biogenesis. Annual Rev Biophys 44:143–166

    CAS  Google Scholar 

  130. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195

    CAS  Google Scholar 

  132. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324

    CAS  PubMed  Google Scholar 

  133. Mogk A, Bukau B, Kampinga HH (2018) Cellular handling of protein aggregates by disaggregation machines. Mol Cell 69:214–226

    CAS  PubMed  Google Scholar 

  134. Horowitz S, Koldewey P, Stull F, Bardwell JC (2018) Folding while bound to chaperones. Curr Opin Struct Biol 48:1–5

    CAS  PubMed  Google Scholar 

  135. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL–GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41:62–76

    CAS  PubMed  Google Scholar 

  136. Chiti F (2006) Relative importance of hydrophobicity, net charge, and secondary structure propensities in protein aggregation. In: Uversky VN, Fink AL (eds) Protein misfolding, aggregation, and conformational diseases: Part A: Protein aggregation and conformational diseases. Springer, Boston, pp 43–59

    Google Scholar 

  137. Ventura S (2005) Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 4:11

    PubMed  PubMed Central  Google Scholar 

  138. Rousseau F, Schymkowitz J, Serrano L (2006) Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16:118–126

    CAS  PubMed  Google Scholar 

  139. Gregersen N, Bross P, Vang S, Christensen JH (2006) Protein misfolding and human disease. Annu Rev Genomics Hum Genet 7:103–124

    CAS  PubMed  Google Scholar 

  140. Stoppini M, Bellotti V (2015) Systemic amyloidosis: lessons from β2-microglobulin. J Biol Chem 290:9951–9958

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    CAS  PubMed  Google Scholar 

  142. Tanskanen M (2013) “Amyloid”—historical aspects. In: Feng D (ed) Amyloidosis. InTech, Rijeka, pp Ch. 01

    Google Scholar 

  143. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10

    PubMed  Google Scholar 

  144. Shewmaker F, McGlinchey RP, Wickner RB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286:16533–16540

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29(2351–2360):2351

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Xiao Y, Ma B (2015) Abeta(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat Struct Mol Biol 22:499–505

    CAS  Google Scholar 

  147. Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–778

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJW, McFarlane HT, Madsen AO, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-[bgr] spines reveal varied steric zippers. Nature 447:453–457

    CAS  PubMed  Google Scholar 

  149. Gazit E (2002) A possible role for π-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    CAS  PubMed  Google Scholar 

  150. Gremer L, Scholzel D, Schenk C, Reinartz E, Labahn J (2017) Fibril structure of amyloid-beta (1–42) by cryo-electron microscopy. Science 358:116–119

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547:185–190

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR (2018) Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun 9:3609

    PubMed  PubMed Central  Google Scholar 

  153. Iadanza MG, Silvers R (2018) The structure of a beta2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism. 9:4517

    Google Scholar 

  154. Tycko R (2014) Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23:1528–1539

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Thirumalai D, Reddy G, Straub JE (2012) Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res 45:83–92

    CAS  PubMed  Google Scholar 

  156. Arce FT, Jang H, Ramachandran S, Landon PB, Nussinov R, Lal R (2011) Polymorphism of amyloid β peptide in different environments: implications for membrane insertion and pore formation. Soft Matter 7:5267–5273

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Sarell CJ, Woods LA, Su Y, Debelouchina GT, Ashcroft AE, Griffin RG, Stockley PG, Radford SE (2013) Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors. J Biol Chem

    Google Scholar 

  158. Pham CLL, Kwan AH, Sunde M (2014) Functional amyloid: widespread in Nature, diverse in purpose. Essays Biochem 56:207–219

    PubMed  Google Scholar 

  159. Otzen D (2010) Functional amyloid. Prion 4:256–264

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32:217–224

    CAS  PubMed  Google Scholar 

  161. Evans ML, Chapman MR (2014) Curli biogenesis: order out of disorder. Biochimica et Biophysica Acta (BBA)—Mol Cell Res 1843:1551–1558

    CAS  Google Scholar 

  162. Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479:141–145

    CAS  PubMed  Google Scholar 

  163. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KPR, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW (2005) Functional amyloid formation within mammalian tissue. PLoS Biol 4:e6

    PubMed Central  Google Scholar 

  165. Smith JF, Knowles TPJ, Dobson CM, MacPhee CE, Welland ME (2006) Characterization of the nanoscale properties of individual amyloid fibrils. Proc Natl Acad Sci 103:15806–15811

    CAS  PubMed  Google Scholar 

  166. Greenwald J, Riek R (2010) Biology of amyloid: structure, function, and regulation. Structure 18:1244–1260

    CAS  PubMed  Google Scholar 

  167. Knowles TPJ, Mezzenga R (2016) Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater 28:6546–6561

    CAS  PubMed  Google Scholar 

  168. Scheibel T, Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist SL (2003) Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc Natl Acad Sci 100:4527–4532

    CAS  PubMed  Google Scholar 

  169. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160

    CAS  PubMed  Google Scholar 

  170. Alberti S, Halfmann R, Lindquist S (2010) Biochemical, cell biological, and genetic assays to analyze amyloid and prion aggregation in yeast (Chap. 30). In: Methods in enzymology. Academic Press, pp 709–734

    Google Scholar 

  171. Sleutel M, Van den Broeck I, Van Gerven N, Feuillie C, Jonckheere W, Valotteau C, Dufrene YF, Remaut H (2017) Nucleation and growth of a bacterial functional amyloid at single-fiber resolution. Nat Chem Biol 13:902–908

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Giurleo JT, He X, Talaga DS (2008) β-Lactoglobulin assembles into amyloid through sequential aggregated intermediates. J Mol Biol 381:1332–1348

    CAS  PubMed  Google Scholar 

  173. Thirumalai D, Klimov DK, Dima RI (2003) Emerging ideas on the molecular basis of protein and peptide aggregation. Curr Opin Struct Biol 13:146–159

    CAS  PubMed  Google Scholar 

  174. Kelly JW (1998) The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 8:101–106

    CAS  PubMed  Google Scholar 

  175. Mahler H-C, Friess W, Grauschopf U, Kiese S (2008) Protein aggregation: pathways, induction factors and analysis. J Pharm Sci 98:2909–2934

    Google Scholar 

  176. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22

    CAS  PubMed  Google Scholar 

  177. Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201

    CAS  PubMed  Google Scholar 

  178. Estácio SG, Krobath H, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN (2014) A simulated intermediate state for folding and aggregation provides insights into ΔN6 β2-microglobulin amyloidogenic behavior. PLoS Comput Biol 10:e1003606

    PubMed  PubMed Central  Google Scholar 

  179. Neudecker P, Robustelli P, Cavalli A, Walsh P, Lundström P, Zarrine-Afsar A, Sharpe S, Vendruscolo M, Kay LE (2012) Structure of an intermediate state in protein folding and aggregation. Science 336:362–366

    CAS  PubMed  Google Scholar 

  180. Honda Ryo P, Xu M, Yamaguchi K-I, Roder H, Kuwata K (2015) A native-like intermediate serves as a branching point between the folding and aggregation pathways of the mouse prion protein. Structure 23:1735–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Jahn TR, Radford SE (2008) Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 469:100–117

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Cohen SIA, Vendruscolo M, Dobson CM, Knowles TPJ (2012) From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol 421:160–171

    CAS  PubMed  Google Scholar 

  183. Buell AK, Dobson CM, Knowles TPJ (2014) The physical chemistry of the amyloid phenomenon: thermodynamics and kinetics of filamentous protein aggregation. Essays Biochem 56:11–39

    PubMed  Google Scholar 

  184. Meisl G, Michaels TCT, Linse S, Knowles TPJ (2018) Kinetic analysis of amyloid formation. Methods Mol Biol 1779:181–196

    Google Scholar 

  185. Herrup K (2015) The case for rejecting the amyloid cascade hypothesis. Nat Neurosci 18:794

    CAS  PubMed  Google Scholar 

  186. Stefani M (2012) Structural features and cytotoxicity of amyloid oligomers: implications in Alzheimer’s disease and other diseases with amyloid deposits. Prog Neurobiol 99:226–245

    CAS  PubMed  Google Scholar 

  187. Bucciantini M, Rigacci S, Stefani M (2014) Amyloid aggregation: role of biological membranes and the aggregate-membrane system. J Phys Chem Lett 5:517–527

    CAS  PubMed  Google Scholar 

  188. Leal SS, Botelho HM, Gomes CM (2012) Metal ions as modulators of protein conformation and misfolding in neurodegeneration. Coord Chem Rev 256:2253–2270

    CAS  Google Scholar 

  189. Morriss-Andrews A, Shea J-E (2015) Computational studies of protein aggregation: methods and applications. Annu Rev Phys Chem 66:643–666

    CAS  PubMed  Google Scholar 

  190. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353

    PubMed  Google Scholar 

  191. Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci 97:11910–11915

    CAS  PubMed  Google Scholar 

  192. Bemporad F, Calloni G, Campioni S, Plakoutsi G, Taddei N, Chiti F (2006) Sequence and structural determinants of amyloid fibril formation. Acc Chem Res 39:620–627

    CAS  PubMed  Google Scholar 

  193. De Baets G, Schymkowitz J, Rousseau F (2014) Predicting aggregation-prone sequences in proteins. Essays Biochem 56:41–52

    PubMed  Google Scholar 

  194. Beerten J, Schymkowitz J, Rousseau F (2012) Aggregation prone regions and gatekeeping residues in protein sequences. Curr Top Med Chem 12:2470–2478

    CAS  PubMed  Google Scholar 

  195. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 7:543–564

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302

    CAS  PubMed  Google Scholar 

  197. Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401

    CAS  PubMed  Google Scholar 

  198. Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinf 8:65

    Google Scholar 

  199. Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43:W306–W313

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Fändrich M, Dobson CM (2002) The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation. EMBO J 21:5682–5690

    PubMed  PubMed Central  Google Scholar 

  201. Bartlett AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16:582–588

    CAS  PubMed  Google Scholar 

  202. Cristovao JS, Henriques BJ, Gomes CM (2019) Biophysical and spectroscopic methods for monitoring protein misfolding and amyloid aggregation. Methods Mol Biol 1873:3–18

    Google Scholar 

  203. Lucas TG, Gomes CM, Henriques BJ (2019) Thermal shift and stability assays of disease-related misfolded proteins using differential scanning fluorimetry. Methods Mol Biol 1873:255–264

    Google Scholar 

  204. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochem Biophys Acta 1751:119–139

    CAS  PubMed  Google Scholar 

  205. Barth A (2007) Infrared spectroscopy of proteins. Biochem Biophys Acta 1767:1073–1101

    CAS  PubMed  Google Scholar 

  206. Correia AR, Adinolfi S, Pastore A, Gomes CM (2006) Conformational stability of human frataxin and effect of Friedreich’s ataxia-related mutations on protein folding. Biochem J 398:605–611

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Gade Malmos K, Blancas-Mejia LM, Weber B, Buchner J, Ramirez-Alvarado M, Naiki H, Otzen D (2017) ThT 101: a primer on the use of thioflavin T to investigate amyloid formation. Amyloid 24:1–16

    CAS  PubMed  Google Scholar 

  208. Miyazawa S, Jernigan RL (1985) Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18:534–552

    CAS  Google Scholar 

  209. Taketomi H, Ueda Y, Gō N (1975) Studies on protein folding, unfolding and fluctuations by computer simulation. Int J Pept Protein Res 7:445–459

    CAS  PubMed  Google Scholar 

  210. Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksandra Elzbieta Dawid, Andrzej Kolinski, (2016) Coarse-Grained Protein Models and Their Applications. Chemical Reviews 116(14):7898–7936

    CAS  PubMed  Google Scholar 

  211. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144–150

    CAS  PubMed  Google Scholar 

  212. Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid AE, Kolinski A (2016) Coarse-grained protein models and their applications. Chem Rev 116:7898–7936

    CAS  PubMed  Google Scholar 

  213. Enciso M, Rey A (2010) A refined hydrogen bond potential for flexible protein models. J Chem Phys 132:235102

    PubMed  Google Scholar 

  214. Holzgräfe C, Wallin S (2014) Smooth functional transition along a mutational pathway with an abrupt protein fold switch. Biophys J 107:1217–1225

    PubMed  PubMed Central  Google Scholar 

  215. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    CAS  PubMed  Google Scholar 

  216. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102–106

    CAS  PubMed  Google Scholar 

  217. Sandro Bottaro, Kresten Lindorff-Larsen, (2018) Biophysical experiments and biomolecular simulations: A perfect match?. Science 361(6400):355–360

    CAS  PubMed  Google Scholar 

  218. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    CAS  Google Scholar 

  219. Bowman GR, Voelz VA, Pande VS (2011) Taming the complexity of protein folding. Curr Opin Struct Biol 21:4–11

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Lane TJ, Shukla D, Beauchamp KA, Pande VS (2013) To milliseconds and beyond: challenges in the simulation of protein folding. Curr Opin Struct Biol 23:58–65

    CAS  PubMed  Google Scholar 

  221. Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK, Shan Y, Wriggers W (2010) Atomic-level characterization of the structural dynamics of proteins. Science 330:341–346

    CAS  PubMed  Google Scholar 

  222. Dror RO, Young C, Shaw DE (2011) Anton, a special-purpose molecular simulation machine. In: Padua D (ed) Encyclopedia of parallel computing. Springer, Boston, pp 60–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cláudio M. Gomes or Patrícia F. N. Faísca .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomes, C.M., Faísca, P.F.N. (2019). Protein Folding: An Introduction. In: Protein Folding. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-00882-0_1

Download citation

Publish with us

Policies and ethics