Skip to main content

Nematic Liquid Crystals Confined Within a Microfluidic Device: Static Case

  • Chapter
  • First Online:
Topological Microfluidics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nematic liquid crystals within a microfluidic device offer interesting insights into the director equilibrium induced by the confining surfaces. Particularly, within microchannels possessing well defined boundary conditions, the nature of anchoring and proximity of the surfaces allow us to control the topology and evolution of defect structures. Furthermore, the surface-induced static equilibrium serves as the initial conditions for the subsequent flow phenomena. In this chapter we shall look into the static equilibrium of the nematic director field, and demonstrate experimental routes to controlled evolution of defects. By tuning the surface anchoring and channel dimensions, different topological possibilities are explored here. The numerical simulations for linear homeotropic microchannels were carried out in collaboration with Miha Ravnik and Julia M Yeomans. In parts this chapter is adapted with permission from the author’s original works published in the Physical Review Letters 110, 048303 (2013) and Soft Matter 9, 1937 (2013)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.P. Valignat, S. Villette, J. Li, R. Barberi, R. Bartolino, E. Dubois-Violette, A.M. Cazabat, Phys. Rev. Lett. 77, 1994 (1996)

    Article  ADS  Google Scholar 

  2. J. Ignés-Mullol, J. Baudry, P. Oswald, Phys. Rev. E 63, 031701 (2001)

    Article  ADS  Google Scholar 

  3. T. Ohzono, J. Fukuda, Nat. Comm. 3, 701 (2012)

    Article  ADS  Google Scholar 

  4. J.-H. Kim, M. Yoneya, H. Yokoyama, Nature 420, 159 (2002)

    Article  ADS  Google Scholar 

  5. D. Pires, J.-B. Fleury, Y. Galerne, Phys. Rev. Lett. 98, 247801 (2007)

    Article  ADS  Google Scholar 

  6. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1995)

    Google Scholar 

  7. A. de Lózar, W. Schöpf, I. Rehberg, D. Svenšek, L. Kramer, Phys. Rev. E 72, 051713 (2005)

    Google Scholar 

  8. M. Kléman, C. Williams, Phil. Mag. 28, 725 (1973)

    Article  ADS  Google Scholar 

  9. G.S. Ranganath, J. Phys, J. Phys. Colloq. 40, C3, 87 (1979)

    Article  Google Scholar 

  10. A.M.J. Spruijt, Solid State Comm. 13, 1919 (1973)

    Article  ADS  Google Scholar 

  11. P.E. Cladis, W. van Saarloos, P.L. Finn, A.R. Kortan, Phys. Rev. Lett. 58, 222 (1987)

    Article  ADS  Google Scholar 

  12. R. Holyst, P. Oswald, Phys. Rev. E 65, 041711 (2002)

    Article  ADS  Google Scholar 

  13. P. Tadapatri, K.S. Krishnamurthy, J. Phys. Chem. B 112, 13509 (2008)

    Article  Google Scholar 

  14. R.B. Meyer, Phil. Mag. 27, 405 (1973)

    Article  ADS  Google Scholar 

  15. C. Williams, Y. Bouligand, J. Phys. (Paris) 35, 589 (1974)

    Article  Google Scholar 

  16. G. de Luca, A.D. Rey, J. Chem. Phys. 127, 104902 (2007)

    Article  ADS  Google Scholar 

  17. Y. Yi, J.E. Maclennan, N.A. Clark, Phys. Rev. E 83, 051708 (2011)

    Article  ADS  Google Scholar 

  18. T. Lopez-Leon, V. Koning, K.B.S. Devaiah, V. Vitelli, A. Fernandez-Nieves, Nat. Phys. 7, 391 (2011)

    Article  Google Scholar 

  19. V. Tomar, S.I. Hernández, N.L. Abbott, J.P. Hernández-Ortiz, J.J. de Pablo, Soft Matter 8, 8679 (2012)

    Article  ADS  Google Scholar 

  20. H. Matthias, S.L. Schweizer, R.B. Wehrspohn, H.S. Kitzerow, J. Opt. A 9, S389 (2007)

    Article  Google Scholar 

  21. M. Humar, M. Ravnik, S. Pajk, I. Musevic, Nat. Phot. 3, 595 (2009)

    Article  Google Scholar 

  22. T. Araki, M. Buscaglia, T. Bellini, H. Tanaka, Nat. Mater. 10, 303 (2011)

    Article  ADS  Google Scholar 

  23. T. Araki, private communication

    Google Scholar 

  24. P. Oswald, P. Pieranski, Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, Boca Raton, 2005), chapter B. III

    Google Scholar 

  25. R. Ondris-Crawford, E.P. Boyko, B.G. Wagner, J.H. Erdmann, S. Žumer, J.W. Doane, J. Appl. Phys. 69, 6380 (1991)

    Article  ADS  Google Scholar 

  26. A. Sengupta, C. Pieper, J. Enderlein, Ch. Bahr, S. Herminghaus, Soft Matter 9, 1937 (2013)

    Article  ADS  Google Scholar 

  27. M. Ravnik, private communication

    Google Scholar 

  28. C.M. Dafermos, Q. J. Mech. Appl. Math. 23, 549 (1970)

    Article  Google Scholar 

  29. J.L. Ericksen, Liquid Crystals and Ordered Fluids (Plenum, New York, 1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sengupta, A. (2013). Nematic Liquid Crystals Confined Within a Microfluidic Device: Static Case. In: Topological Microfluidics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-00858-5_5

Download citation

Publish with us

Policies and ethics