Skip to main content

Analytical and Experimental Protocols for Unified Characterizations in Real Time Space for Isotropic Linear Viscoelastic Moduli from 1–D Tensile Experiments

  • Conference paper
  • First Online:
Challenges In Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2

Abstract

It is shown that for linear isotropic elastic and viscoelastic materials a single type of 1–D set of tension experiments with optical measurements supplies sufficient stress and strain data to completely characterize all moduli (including Young’s, shear and bulk ones) and all compliances. This is accomplished directly in real time space without the use of integral transforms and/or Poisson’s ratios and includes the complete history of loading and of displacements including their build ups. Additionally, several approaches to the determination of instantaneous moduli from 1–D quasi-static and dynamic experimental data are presented and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FPS = frames per second, not feet per second which are denoted by fps.

References

  1. Shtark A, Grosbein H, Sameach G, Hilton HH (2007) An alternate protocol for determining viscoelastic material properties based on tensile tests without use of Poisson ratios. In: Proceedings of the 2007 international mechanical engineering congress and exposition, Seattle. ASME Paper IMECE2007-41068

    Google Scholar 

  2. Shtark A, Grosbein H, Hilton HH (2009) Analytical determination without use of Poisson ratios of temperature dependent viscoelastic material properties based on uniaxial tensile experiments. In: Proceedings of the 2009 international mechanical engineering congress and exposition, Lake Buena Vista. ASME Paper IMECE2009-10332

    Google Scholar 

  3. Michaeli M, Shtark A, Grosbein H, Steevens AJ, Hilton HH (2011) Analytical, experimental and computational viscoelastic material characterizations absent Poisson’s ratios. In: Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics and Materials (SDM) conference. AIAA Paper 2011-1809

    Google Scholar 

  4. Shtark A, Grosbein H, Sameach G, Hilton HH (2012) An alternate protocol for determining viscoelastic material properties based on tensile tests without use of Poisson ratios. ASME J Appl Mech (accepted for publication). JAM08-1361

    Google Scholar 

  5. Michaeli M, Shtark A, Grosbein H, Hilton HH (2012) Characterization of isotropic viscoelastic moduli and compliances from 1–D tension experiments. In: Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics and Materials (SDM) conference, Anaheim. AIAA Paper ID 1212795

    Google Scholar 

  6. Michaeli M, Shtark A, Grosbein H, Altus E, Hilton HH (2013) A unified real time approach to characterizations of isotropic linear viscoelastic media from 1–D experiments without use of Poisson’s ratios. In: Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC structures, Structural Dynamics and Materials (SDM) conference, Boston. AIAA Paper ID 1512571

    Google Scholar 

  7. Anonymous (2011) www.gom.com/metrology-systems/digital-image-correlation.html

  8. Anonymous (2012) www.visionresearch.com

  9. Siméon-Denis P (1811) Traité de méchanique. Courcier, Paris

    Google Scholar 

  10. Siméon-Denis P (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie Royal des Sciences de l’Institut de France 8:357–570, 623–627

    Google Scholar 

  11. Lakes RS (1992) The time-dependent Poisson’s ratio of viscoelastic materials can increase or decrease. Cell Compos 11:466–469

    Google Scholar 

  12. Tschoegl NW, Knauss WG, Emri I (2002) Poisson’s ratio in linear viscoelasticity – a critical review. Mech Time-Depend Mater 6:3–51

    Google Scholar 

  13. Lakes RS, Wineman A (2006) On Poisson’s ratio in linearly viscoelastic solids. J Elast 85:45–63

    Google Scholar 

  14. Hilton HH, Sung Yi (1998) The significance of anisotropic viscoelastic Poisson ratio stress and time dependencies. Int J Solids Struct 35:3081–3095

    Google Scholar 

  15. Hilton HH (2001) Implications and constraints of time independent Poisson ratios in linear isotropic and anisotropic viscoelasticity. J Elast 63:221–251

    Google Scholar 

  16. Hilton HH (2009) The elusive and fickle viscoelastic Poisson’s ratio and its relation to the elastic–viscoelastic correspondence principle. J Mech Mater Struct 4:1341–1364

    Google Scholar 

  17. Hilton HH (2011) Clarifications of certain ambiguities and failings of Poisson’s ratios in linear viscoelasticity. J Elast 104:303–318

    Google Scholar 

  18. Alfrey T Jr (1948) Mechanical behavior of high polymers. Interscience Publishers, Inc., New York

    Google Scholar 

  19. Brinson HF, Brinson LC (2008) Polymer engineering science and viscoelasticity: an introduction. Springer, New York

    Google Scholar 

  20. Christensen RM (1982) Theory of viscoelasticity – an introduction, 2nd edn. Academic Press, New York

    Google Scholar 

  21. Hilton HH (1964) An introduction to viscoelastic analysis. In: Baer E (ed) Engineering design for plastics. Reinhold Publishing Corp., New York, pp 199–276

    Google Scholar 

  22. Lakes RS (2009) Viscoelastic materials. Cambridge University Press, New York

    Google Scholar 

  23. Wineman AS, Rajakopal KR (2000) Mechanical response of polymers – an introduction. Cambridge, New York

    Google Scholar 

  24. Zener C (1948) Elasticity and anelasticity of metals. University of Chicago Press, Chicago

    Google Scholar 

  25. Prony Gaspard CFMR Baron de (1795) Essai experimental et analytique. Journal de l’École Polytechnique de Paris 1:24–76

    Google Scholar 

  26. Anonymous (2010) www.instron.us/wa/home/default_en.aspx

Download references

Acknowledgements

Support from IMI at Ramat Hasharon, Israel; Technion, Israel Institute of Technology (IIT) at Haifa; and from the Private Sector Program Division of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UIUC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry H. Hilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Michaeli, M., Shtark, A., Grosbein, H., Altus, E., Hilton, H.H. (2014). Analytical and Experimental Protocols for Unified Characterizations in Real Time Space for Isotropic Linear Viscoelastic Moduli from 1–D Tensile Experiments. In: Antoun, B., et al. Challenges In Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-00852-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00852-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00851-6

  • Online ISBN: 978-3-319-00852-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics