Skip to main content

Single-Stage Service Level and Tardiness Model

  • Chapter
  • First Online:
  • 2107 Accesses

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 671))

Abstract

For production systems, the relationship between utilization, WIP, and production lead time is analytically well defined in the literature. Nonetheless, this relationship lacks a link to the customer’ perspective as shown in Chap. 2. This lack of analytical models to identify the link between the internal production system behavior and the external customer related measures of service level and tardiness for MTO production systems leads to the model developed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altendorfer, K., & Jodlbauer, H. (2011). An analytical model for service level and tardiness in a single machine MTO production system. International Journal of Production Research, 49(7), 1827–1850.

    Article  Google Scholar 

  • Buzacott, J. A., & Shanthikumar, J. G. (1992). Design of manufacturing systems using queueing models. Queueing Systems, 12(1), 135–213.

    Article  Google Scholar 

  • Chen, H., & Yao, D. D. (2001). Fundamentals of queueing networks: Performance, asymptotics, and optimization. New York: Springer.

    Book  Google Scholar 

  • Duenyas, I., & Hopp, W. J. (1995). Quoting customer lead times. Management Science, 41(1), 43–57.

    Article  Google Scholar 

  • Hopp, W. J., & Spearman, M. L. (2008). Factory physics: Foundation of manufacturing management (3rd ed.). Chicago: McGraw-Hill/Irwin.

    Google Scholar 

  • Jodlbauer, H. (2008a). A time-continuous analytic production model for service level, work in process, lead time and utilization. International Journal of Production Research, 46(7), 1723–1744.

    Article  Google Scholar 

  • Jodlbauer, H. (2008b). Customer driven production planning. International Journal of Production Economics, 111(2), 793–801.

    Article  Google Scholar 

  • Karaesmen, F., Liberopoulos, G., & Dallery, Y. (2004). The value of advance demand information in production/inventory systems. Annals of Operations Research, 126(1), 135–157.

    Article  Google Scholar 

  • Little, J. D. C. (1961). A proof for the queuing formula L = λW. Operations Research, 9(3), 383–387.

    Article  Google Scholar 

  • Liu, L., & Yuan, X.-M. (2001). Throughput, flow times, and service level in an unreliable assembly system. European Journal of Operational Research, 135(3), 602–615.

    Article  Google Scholar 

  • Medhi, J. (1991). Stochastic models in queuing theory. Boston: Academic.

    Google Scholar 

  • Mirasol, N. M. (1963). The output of an M/G/∞ queuing system is poisson. Operations Research, 11(2), 282–284.

    Article  Google Scholar 

  • Newell, G. F. (1966). The M/G/∞ queue. SIAM Journal on Applied Mathematics, 14(1), 86–88.

    Article  Google Scholar 

  • Stidham, S., Jr. (1970). On the optimality of single server queuing systems. Operations Research, 18(4), 708–732.

    Article  Google Scholar 

  • Tijms, H. C. (2003). A first course in stochastic models. Amsterdam: Wiley.

    Book  Google Scholar 

  • Wiendahl, H.-P., & Breithaupt, J.-W. (1999). Modelling and controlling the dynamics of production systems. Production Planning & Control, 10(4), 389–401.

    Article  Google Scholar 

  • Wiendahl, H.-H., von Cieminski, G., & Wiendahl, H.-P. (2005). Stumbling blocks of PPC: Towards the holistic configuration of PPC systems. Production Planning & Control, 16(7), 634–651.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

Proof of Proposition 3.1

The comparison of a stochastic customer required lead time value L to a deterministic WAW value X leads to a random assignment of orders to type 1 and type 2 orders. Type 1 orders have \( L\leq X \) with probability p and type 2 orders have \( L{>}X \) with probability \( \left( {1-p} \right) \). Based on the splitting property of the Poisson input stream with rate \( \lambda \), the two resulting streams of events are again Poisson streams with rates \( \varphi =p\lambda \) and \( \psi =\left( {1-p} \right)\lambda \) respectively (see Tijms (2003)). The Poisson stream 1 (\( L\leq X \)) with rate \( \varphi =p\lambda \) directly feeds the M/M/1 production system. The Poisson stream 2 with rate \( \psi =\left( {1-p} \right)\lambda \) feeds the buffer of units waiting to be released to the system. This WAW buffer can be transformed to an M/G/∞ queuing system since the service time has an arbitrary distribution, which is based on the arbitrary customer required lead time distribution, and each order has an own server since the waiting time is \( L-X \). For such an M/G/∞ queuing system, the output process is a Poisson process with the same rate as the input process, which is \( \psi =\left( {1-p} \right)\lambda \) (see Mirasol (1963) and Newell (1966)). This output process of the WAW buffer feeds the M/M/1 production system. Based on the merging property of two Poisson processes, the input process for the M/M/1 production system is Poisson with rate \( \lambda =\varphi +\psi \) (see Tijms (2003)).

Derivation of Equation (3.6)

Figure 3.4 visualizes The probability of an order being delivered on time in the production lead time \( W \) and customer required lead time \( L \) space. The shaded area indicates when an order is delivered on time. Assuming that the distribution of \( W \) and \( L \) are independent of each other (which holds true for FIFS dispatching discipline) the following equation for the service level holds:

$$ \begin{array}{llll} \eta =\int\limits_0^{\infty } {\int\limits_{\tau}^{\infty } {{f_W}\left( \tau \right)} {f_L}\left( \theta \right)d\theta d\tau } =\int\limits_0^{\infty } {{f_W}\left( \tau \right)\int\limits_{\tau}^{\infty } {{f_L}\left( \theta \right)d\theta d\tau } } =\int\limits_0^{\infty } {{f_W}\left( \tau \right)\left( {1-{F_L}\left( \tau \right)} \right)d\tau } \hfill \\ =1-\int\limits_0^{\infty } {{f_W}\left( \tau \right){F_L}\left( \tau \right)d\tau } =\left. {{F_W}\left( \tau \right){F_L}\left( \tau \right)} \right|_0^{\infty }-\int\limits_0^{\infty } {{f_W}\left( \tau \right){F_L}\left( \tau \right)d\tau } \hfill \\ =\int\limits_0^{\infty } {{F_W}\left( \tau \right){f_L}\left( \tau \right)d\tau } \hfill \cr \mathrm{ with}\ {F_L}(0)=0;\ {F_L}\left( \infty \right)=1;\ {F_W}(0)=0;\ {F_W}\left( \infty \right)=1; \end{array} $$
(3.17)
Fig. 3.4
figure 00034

On-time probability in joint probability space of W and L

Derivation of Equation (3.7)

$$ \begin{array}{lllll} E[I] =\int\limits_0^{\infty } {\int\limits_0^{\theta } {{f_W}\left( \tau \right)\left( {\theta -\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta =\int\limits_0^{\infty } {\frac{{\theta k+{e^{{-k\theta }}}-1}}{k}} \beta {e^{{-\beta \theta }}}d\theta \hfill \cr \qquad\,=\frac{\beta }{k}\left( {\int\limits_0^{\infty } {\theta k{e^{{-\beta \theta }}}} d\theta +\int\limits_0^{\infty } {{e^{{-\left( {k+\beta } \right)\theta }}}} d\theta -\int\limits_0^{\infty } {{e^{{-\beta \theta }}}} d\theta } \right)\cr \qquad\,=\frac{\beta }{k}\left( {\int\limits_0^{\infty } {\theta k{e^{{-\beta \theta }}}} d\theta +\frac{1}{{k+\beta }}-\frac{1}{\beta }} \right) \hfill \cr \qquad\,=\frac{\beta }{k}\left( {\frac{k}{{{\beta^2}}}+\frac{1}{{k+\beta }}-\frac{1}{\beta }} \right)=\frac{1}{\beta }-\frac{1}{{k+\beta }} \end{array} $$
(3.18)

Derivation of Equation (3.9)

$$ \begin{array}{lllll} \eta =\int\limits_0^X {{F_W}\left( \tau \right){f_L}\left( \tau \right)d\tau } +\int\limits_X^{\infty } {{F_W}(X){f_L}\left( \tau \right)d\tau } \hfill \cr \;\;\;=\int\limits_0^X {\left( {1-{e^{{-k\tau }}}} \right)\beta {e^{{-\beta \tau }}}d\tau } +\int\limits_X^{\infty } {\left( {1-{e^{-kX }}} \right)\beta {e^{{-\beta \tau }}}d\tau } \hfill \cr \;\;\;=\beta \left( {\left. {\frac{{{e^{{-\beta \tau }}}}}{{-\beta }}} \right|_0^X-\left. {\frac{{{e^{{-\left( {k+\beta } \right)\tau }}}}}{{-\left( {k+\beta } \right)}}} \right|_0^X} \right)+\left( {1-{e^{-kX }}} \right)\beta \left. {\frac{{{e^{{-\beta \tau }}}}}{{-\beta }}} \right|_X^{\infty } \hfill \cr \;\;\;=1+\frac{{\beta {e^{{-\left( {k+\beta } \right)X}}}-\beta }}{{k+\beta }}-\frac{{\left( {k+\beta } \right){e^{{-\left( {k+\beta } \right)X}}}}}{{k+\beta }}=1-\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k+\beta }} \end{array} $$
(3.19)

Derivation of Equation (3.10)

$$ \begin{array}{lllll} E[I] =\int\limits_0^X {\int\limits_0^{\theta } {{f_W}\left( \tau \right)\left( {\theta -\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta +\int\limits_X^{\infty } {\int\limits_0^X {{f_W}\left( \tau \right)\left( {X-\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta \hfill \cr \qquad\,=\int\limits_0^X {\frac{{\theta k+{e^{{-k\theta }}}-1}}{k}} \beta {e^{{-\left( {\beta \theta } \right)}}}d\theta +\int\limits_X^{\infty } {\frac{{Xk+{e^{-kX }}-1}}{k}} \beta {e^{{-\beta \theta }}}d\theta \hfill \cr \qquad\,=\frac{\beta }{k}\left( {\int\limits_0^X {\theta k{e^{{-\beta \theta }}}} d\theta +\int\limits_0^X {{e^{{-\left( {k+\beta } \right)\theta }}}} d\theta -\int\limits_0^X {{e^{{-\beta \theta }}}} d\theta } \right)+\beta \frac{{Xk+{e^{-kX }}-1}}{k}\int\limits_X^{\infty } {{e^{{-\beta \theta }}}d\theta } \hfill \cr \qquad\,=\frac{\beta }{k}\left( {Xk\frac{{{e^{{-\beta X}}}}}{{-\beta }}-\frac{{k\left( {{e^{{-\beta X}}}-1} \right)}}{{{\beta^2}}}-\frac{{{e^{{-\left( {k+\beta } \right)X}}}-1}}{{\left( {k+\beta } \right)}}+\frac{{{e^{{-\beta X}}}-1}}{\beta }} \right) \hfill \cr \qquad\,\,+\frac{{Xk{e^{{-\beta X}}}+{e^{{-\left( {k+\beta } \right)X}}}-{e^{{-\beta X}}}}}{k} \hfill \cr \qquad\,=\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k\left( {k+\beta } \right)}}-\frac{{k\left( {{e^{{-\beta X}}}-1} \right)+\beta }}{{k\beta }}=\frac{{\beta {e^{{-\left( {k+\beta } \right)X}}}-\left( {k+\beta } \right){e^{{-\beta X}}}+k}}{{\beta \left( {k+\beta } \right)}} \end{array} $$
(3.20)

Limes calculation \( \rho \to 1 \):

$$ \mathop{\lim}\limits_{{\rho \to 1}}\left( {\frac{{\beta {e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-\left( {\mu \left( {1-\rho } \right)+\beta } \right){e^{{-\beta X}}}+\mu \left( {1-\rho } \right)}}{{\beta \left( {\mu \left( {1-\rho } \right)+\beta } \right)}}} \right)=\frac{{\beta {e^{{-\beta X}}}-\beta {e^{{-\beta X}}}}}{{{\beta^2}}}=0 $$
(3.21)

Limes calculation \( \rho \to 0 \):

$$ \begin{array}{lllll} \mathop{\lim}\limits_{{\rho \to 0}}\left( {\frac{{\beta {e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-\left( {\mu \left( {1-\rho } \right)+\beta } \right){e^{{-\beta X}}}+\mu \left( {1-\rho } \right)}}{{\beta \left( {\mu \left( {1-\rho } \right)+\beta } \right)}}} \right) \hfill \\=\frac{{\beta {e^{{-\left( {\mu +\beta } \right)X}}}-\left( {\mu +\beta } \right){e^{{-\beta X}}}+\mu }}{{\beta \left( {\mu +\beta } \right)}}=\frac{{\beta {e^{{-\left( {\mu +\beta } \right)X}}}-\left( {\mu +\beta } \right){e^{{-\beta X}}}}}{{\beta \left( {\mu +\beta } \right)}}+\frac{\mu }{{\beta \left( {\mu +\beta } \right)}} \hfill \\\mathrm{ with}\ {e^{{-\left( {\mu +\beta } \right)X}}}<{e^{{-\beta X}}}\Rightarrow \beta {e^{{-\left( {\mu +\beta } \right)X}}}-\beta {e^{{-\beta X}}}<0 \hfill \\\Rightarrow \frac{{\beta {e^{{-\left( {\mu +\beta } \right)X}}}-\beta {e^{{-\beta X}}}-\mu {e^{{-\beta X}}}}}{{\beta \left( {\mu +\beta } \right)}}+\frac{\mu }{{\beta \left( {\mu +\beta } \right)}}<\frac{\mu }{{\beta \left( {\mu +\beta } \right)}} \end{array} $$
(3.22)

Proof of Proposition 3.2

For the pdf of production lead time being independent of the WAW X, the service level with WAW policy is lower than without WAW policy:

$$ \begin{array}{lllll} \int\limits_0^X {{F_W}\left( \tau \right){f_L}\left( \tau \right)d\tau } +\int\limits_X^{\infty } {{F_W}(X){f_L}\left( \tau \right)d\tau } \mathop{<}\limits^{!}\int\limits_0^{\infty } {{F_W}\left( \tau \right){f_L}\left( \tau \right)d\tau } \hfill \\\Leftrightarrow \int\limits_X^{\infty } {{F_W}(X){f_L}\left( \tau \right)d\tau } \mathop{<}\limits^{!}\int\limits_X^{\infty } {{F_W}\left( \tau \right){f_L}\left( \tau \right)d\tau } \end{array} $$
(3.23)

which holds since any cdf is an increasing function.

For the pdf of production lead time being independent of the WAW X, the expected FGI lead time with WAW policy is lower than without WAW policy:

$$ \begin{array}{lllll} \int\limits_0^X {\int\limits_0^{\theta } {{f_W}\left( \tau \right)\left( {\theta -\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta +\int\limits_X^{\infty } {\int\limits_0^X {{f_W}\left( \tau \right)\left( {X-\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta \hfill \\ \qquad\qquad\qquad\qquad\qquad\quad\qquad\mathop{<}\limits^{!}\int\limits_0^{\infty } {\int\limits_0^{\theta } {{f_W}\left( \tau \right)\left( {\theta -\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta \hfill \\\Leftrightarrow \int\limits_X^{\infty } {\int\limits_0^X {{f_W}\left( \tau \right)\left( {X-\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta \mathop{<}\limits^{!}\int\limits_X^{\infty } {\int\limits_0^{\theta } {{f_W}\left( \tau \right)\left( {\theta -\tau } \right)d\tau } } {f_L}\left( \theta \right)d\theta \end{array} $$
(3.24)

which holds for any production lead time and customer required lead time distribution since \( \theta \geq X \) on the right hand side of the last line in inequality (3.24).

For the pdf of production lead time being independent of the WAW X, the expected tardiness with WAW policy is higher than without WAW policy:

$$ \begin{array}{lllll} \int\limits_0^X {\int\limits_{\theta}^{\infty } {{f_W}\left( \tau \right)\left( {\tau -\theta } \right)d\tau } } {f_L}\left( \theta \right)d\theta +\int\limits_X^{\infty } {\int\limits_X^{\infty } {{f_W}\left( \tau \right)\left( {\tau -X} \right)d\tau } } {f_L}\left( \theta \right)d\theta \hfill \\ \qquad\qquad\qquad\qquad\qquad\quad\qquad\mathop{>}\limits^{!}\int\limits_0^{\infty } {\int\limits_{\theta}^{\infty } {{f_W}\left( \tau \right)\left( {\tau -\theta } \right)d\tau } } {f_L}\left( \theta \right)d\theta \hfill \\\Leftrightarrow \int\limits_X^{\infty } {\int\limits_X^{\infty } {{f_W}\left( \tau \right)\left( {\tau -X} \right)d\tau } } {f_L}\left( \theta \right)d\theta \mathop{>}\limits^{!}\int\limits_X^{\infty } {\int\limits_{\theta}^{\infty } {{f_W}\left( \tau \right)\left( {\tau -\theta } \right)d\tau } } {f_L}\left( \theta \right)d\theta \end{array} $$
(3.25)

which holds for any production lead time and customer required lead time distribution since \( \theta \geq X \) on the right hand side of the last line in inequality (3.25).

Derivation of Equation (3.13)

$$ \begin{array}{lllll} E[G]=\frac{{\rho \mu \left( {{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-1} \right)}}{{\mu \left( {1-\rho } \right)+\beta }}-\frac{{\rho \mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \cr \frac{dE[G] }{{d\rho }}=\frac{{\mu \left( {{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-1} \right)}}{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{X\rho {\mu^2}{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}}}{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}\left( {{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-1} \right)}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}} \hfill \cr -\frac{{\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta }=0 \hfill \cr \Leftrightarrow \frac{{\mu {e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}\left( {1+X\rho \mu } \right)-\mu }}{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}\left( {{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}-1} \right)}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}}=\frac{{\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \cr \Leftrightarrow \frac{{\mu {e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}\left( {1+X\rho \mu } \right)}}{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}}=\frac{{\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \cr +\frac{\mu }{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}} \end{array} $$
(3.26)

With defining

$$ \begin{array}{lllll} lhs\left( \rho \right)=\frac{{\mu {e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}\left( {1+X\rho \mu } \right)}}{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}{e^{{-\left( {\mu \left( {1-\rho } \right)+\beta } \right)X}}}}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}} \hfill \cr rhs\left( \rho \right)=\frac{{\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta }+\frac{\mu }{{\mu \left( {1-\rho } \right)+\beta }}+\frac{{\rho {\mu^2}}}{{{{{\left( {\mu \left( {1-\rho } \right)+\beta } \right)}}^2}}} \end{array} $$
(3.27)

it follows that Eq. (3.26) has one unique solution which is a maximum since \( \frac{d}{{d\rho }}lhs\left( \rho \right)>0 \), \( \frac{d}{{d\rho }}rhs\left( \rho \right)>0 \), \( \frac{d}{{{d^2}\rho }}lhs\left( \rho \right)>0 \), \( \frac{d}{{{d^2}\rho }}rhs\left( \rho \right)>0 \) and \( lhs\left( \rho \right){>}rhs\left( \rho \right) \) for \( \rho =0 \) as well as \( lhs\left( \rho \right){<}rhs\left( \rho \right) \) for \( \rho =1 \). For \( \rho =0 \) it follows

$$ lhs(0){>}rhs(0)\Leftrightarrow \frac{{\left( {{e^{{-\left( {\mu +\beta } \right)X}}}-1} \right)}}{{\left( {\mu +\beta } \right)X}}>\frac{{\left( {{e^{{-\beta X}}}-1} \right)}}{{\beta X}} $$
(3.28)

which holds since

$$ \frac{d}{da}\left( {\frac{{{e^{-a }}-1}}{a}} \right)>0\Leftrightarrow -\frac{{{e^{-a }}}}{a}-\frac{{{e^{-a }}-1}}{{{a^2}}}>0\Leftrightarrow {e^a}-1{>}a $$
(3.29)

and for \( \rho =1 \) it holds:

$$ \begin{array}{lllll} lhs(1){<}rhs(1)\Leftrightarrow \frac{{\mu {e^{{-\beta X}}}\left( {1+X\mu } \right)}}{\beta }+\frac{{{\mu^2}\left( {{e^{{-\beta X}}}-1} \right)}}{{{\beta^2}}}<\frac{{\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta }+\frac{\mu }{\beta } \hfill \cr \Leftrightarrow {e^{{\beta X}}}-1>\beta X \end{array} $$
(3.30)

which is fulfilled with \( {e^x}-1{>}x \).

Derivation of Equations (3.14) and (3.15)

Based on Eqs. (3.6) and (3.9) for the service level in a system without and with WAW policy the following can be stated provided the service level in both systems is equal:

$$ \begin{array}{lllll} \eta =1-\frac{\beta }{{\left( {k+\beta } \right)}}\Leftrightarrow k\left( {1-\eta } \right)-\beta \eta =0 \hfill \cr \mathrm{ and} \hfill \cr {\eta_X}=1-\frac{{{k_X}{e^{{-\left( {{k_X}+\beta } \right)X}}}+\beta }}{{{k_X}+\beta }}\Leftrightarrow {k_X}\left( {1-{\eta_X}} \right)-{k_X}{e^{{-\left( {{k_X}+\beta } \right)X}}}-\beta {\eta_X}=0 \hfill \cr \mathrm{ with}\ \eta ={\eta_X} \hfill \cr \Rightarrow k\left( {1-\eta } \right)-\beta \eta ={k_X}\left( {1-\eta } \right)-{k_X}{e^{{-\left( {{k_X}+\beta } \right)X}}}-\beta \eta \hfill \cr \Leftrightarrow \left( {k-{k_X}} \right)\left( {1-\eta } \right)=-{k_X}{e^{{-\left( {{k_X}+\beta } \right)X}}} \hfill \cr \mathop{\Leftrightarrow}\limits_{\begin{array}{lllll}\scriptstyle k=\mu \left( {1-\rho } \right) \\{k_X}=\mu \left( {1-{\rho_X}} \right) \end{array}}\rho ={\rho_X}+\frac{{1-{\rho_X}}}{{1-\eta }}{e^{{-\left( {\mu \left( {1-{\rho_X}} \right)+\beta } \right)X}}} \end{array}$$
(3.31)

The index X indicates the system applying the WAW policy. The utilization loss can be calculated as:

$$ \Delta \rho =\rho -{\rho_X}=\frac{{1-{\rho_X}}}{{1-\eta }}{e^{{-\left( {\mu \left( {1-{\rho_X}} \right)+\beta } \right)X}}} $$
(3.32)

Based on Eqs. (3.12) and (3.4), the following can be stated for the FGI reduction:

$$ \begin{array}{lllll} \Delta E[G]=E[G]-E[{G_X}]=\frac{{k\mu \rho }}{{k+\beta }}-\frac{{{\rho_X}\mu \left( {{e^{{-\left( {{k_X}+\beta } \right)X}}}-1} \right)}}{{{k_X}+\beta }}+\frac{{{\rho_X}\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \\=\frac{{{\rho_X}\mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta }+\frac{{\left( {{\rho_X}+\varDelta \rho } \right)\mu k}}{{\beta \left( {k+\beta } \right)}}-\frac{{{\rho_X}\mu \left( {{e^{{-\left( {{k_X}+\beta } \right)X}}}-1} \right)}}{{{k_X}+\beta }} \end{array} $$
(3.33)

Proof of Proposition 3.3

Service level increases with increasing \( k \) (decreases with increasing mean production lead time \( 1/k \)):

$$ \begin{array}{lllll} \eta =1-\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k+\beta }} \hfill \cr \frac{{d\eta }}{dk }=\frac{{kX{e^{{-\left( {k+\beta } \right)X}}}-{e^{{-\left( {k+\beta } \right)X}}}}}{{k+\beta }}+\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{{{{\left( {k+\beta } \right)}}^2}}}\mathop{>}\limits^{!}0 \hfill \cr \Rightarrow {k^2}X{e^{{-\left( {k+\beta } \right)X}}}+\beta kX{e^{{-\left( {k+\beta } \right)X}}}+\beta \mathop{>}\limits^{!}\beta {e^{{-\left( {k+\beta } \right)X}}} \end{array} $$
(3.34)

which is fulfilled with \( \beta >\beta {e^{{-\left( {k+\beta } \right)X}}} \) and \( {k^2}X{e^{{-\left( {k+\beta } \right)X}}}+\beta kX{e^{{-\left( {k+\beta } \right)X}}}>0 \).

The expected FGI lead time increases with increasing \( k \) (decreases with increasing mean production lead time \( 1/k \)):

$$ \begin{array}{lllll} E\left[ I \right]=\frac{{\beta {e^{{-\left( {k+\beta } \right)X}}}-\left( {k+\beta } \right){e^{{-\beta X}}}+k}}{{\beta \left( {k+\beta } \right)}} \hfill \cr \frac{{dE\left[ I \right]}}{dk }=\frac{{1-{e^{{-\beta X}}}-X\beta {e^{{-\left( {k+\beta } \right)X}}}}}{{\beta \left( {k+\beta } \right)}}-\frac{{k+\beta {e^{{-\left( {k+\beta } \right)X}}}-\left( {k+\beta } \right){e^{{-\beta X}}}}}{{\beta {{{\left( {k+\beta } \right)}}^2}}}\mathop{>}\limits^{!}0 \hfill \cr \Rightarrow 1-\left( {k+\beta } \right)X{e^{{-\left( {k+\beta } \right)X}}}-{e^{{-\left( {k+\beta } \right)X}}}\mathop{>}\limits^{!}0\Rightarrow {e^{{\left( {k+\beta } \right)X}}}\mathop{>}\limits^{!}1+\left( {k+\beta } \right)X \end{array} $$
(3.35)

which is fulfilled with \( {e^x}-1{>}x \).

The expected tardiness decreases with increasing \( k \) (increases with increasing mean production lead time \( 1/k \)):

$$ \begin{array}{lllll} E\left[ C \right]=\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k\left( {k+\beta } \right)}} \hfill \cr \frac{{dE\left[ C \right]}}{dk }=\frac{{{e^{{-\left( {k+\beta } \right)X}}}-kX{e^{{-\left( {k+\beta } \right)X}}}}}{{k\left( {k+\beta } \right)}}-\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k{{{\left( {k+\beta } \right)}}^2}}}-\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{{k^2}\left( {k+\beta } \right)}}\mathop{<}\limits^{!}0 \hfill \cr \Rightarrow \frac{{\left( {k+\beta } \right)k{e^{{-\left( {k+\beta } \right)X}}}-\left( {k+\beta } \right){k^2}X{e^{{-\left( {k+\beta } \right)X}}}}}{{{k^2}{{{\left( {k+\beta } \right)}}^2}}}-\frac{{{k^2}{e^{{-\left( {k+\beta } \right)X}}}+k\beta }}{{{k^2}{{{\left( {k+\beta } \right)}}^2}}} \hfill \cr -\frac{{\left( {k+\beta } \right)k{e^{{-\left( {k+\beta } \right)X}}}+\left( {k+\beta } \right)\beta }}{{{k^2}{{{\left( {k+\beta } \right)}}^2}}}\mathop{<}\limits^{!}0 \hfill \cr \Rightarrow -{k^3}X{e^{{-\left( {k+\beta } \right)X}}}-\beta {k^2}X{e^{{-\left( {k+\beta } \right)X}}}-{k^2}{e^{{-\left( {k+\beta } \right)X}}}-2k\beta -{\beta^2}\mathop{<}\limits^{!}0 \end{array} $$
(3.36)

which is fulfilled with \( k,X,\beta >0 \).

The expected FGI increases with increasing \( k \) (decreases with increasing mean production lead time \( 1/k \)):

$$ \begin{array}{lllll} E\left[ G \right]=\frac{{\lambda \left( {{e^{{-\left( {k+\beta } \right)X}}}-1} \right)}}{{k+\beta }}-\frac{{\lambda \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \cr \frac{{dE\left[ G \right]}}{dk }=-\frac{{\lambda \left( {{e^{{-\left( {k+\beta } \right)X}}}-1} \right)}}{{{{{\left( {k+\beta } \right)}}^2}}}-\frac{{X\lambda {e^{{-\left( {k+\beta } \right)X}}}}}{{k+\beta }}\mathop{>}\limits^{!}0 \hfill \cr \Rightarrow -\lambda \left( {{e^{{-\left( {k+\beta } \right)X}}}-1} \right)-\left( {k+\beta } \right)X\lambda {e^{{-\left( {k+\beta } \right)X}}}\mathop{>}\limits^{!}0 \hfill \cr \Rightarrow {e^{{\left( {k+\beta } \right)X}}}\mathop{>}\limits^{!}1+\left( {k+\beta } \right)X \end{array} $$
(3.37)

which is fulfilled with \( {e^x}-1{>}x \).

3.1 Service Level, FGI, FGI Lead Time, and Tardiness with Respect to Expected WIP

With \( k=\frac{\mu }{{1+E\left[ Y \right]}} \) and \( \rho =\frac{{E\left[ Y \right]}}{{1+E\left[ Y \right]}} \) from Eq. (3.1), the Eqs. (3.9, 3.10, 3.11 and 3.12) can be restated with respect to expected WIP when \( \mu \) is predefined:

$$ \begin{array}{lllll} \eta =1-\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k+\beta }}=1-\frac{{\frac{\mu }{{1+E\left[ Y \right]}}{e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}+\beta }}{{\frac{\mu }{{1+E\left[ Y \right]}}+\beta }} \hfill \cr =1-\frac{{\mu {e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}+\beta \left( {1+E\left[ Y \right]} \right)}}{{\mu +\beta \left( {1+E\left[ Y \right]} \right)}} \end{array} $$
(3.38)
$$ \begin{array}{lllll} E[I] =\frac{{\beta {e^{{-\left( {k+\beta } \right)X}}}-\left( {k+\beta } \right){e^{{-\beta X}}}+k}}{{\beta \left( {k+\beta } \right)}} \hfill \cr =\frac{{\beta \left( {1+E\left[ Y \right]} \right){e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}-\left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right){e^{{-\beta X}}}+\mu }}{{\beta \left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right)}} \end{array} $$
(3.39)
$$ E[C]=\frac{{k{e^{{-\left( {k+\beta } \right)X}}}+\beta }}{{k\left( {k+\beta } \right)}}=\frac{{\mu \left( {1+E\left[ Y \right]} \right){e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}+\beta {{{\left( {1+E\left[ Y \right]} \right)}}^2}}}{{\mu \left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right)}} $$
(3.40)
$$ \begin{array}{lllll} E[G] =\frac{{\rho \mu \left( {{e^{{-\left( {k+\beta } \right)X}}}-1} \right)}}{{k+\beta }}-\frac{{\rho \mu \left( {{e^{{-\beta X}}}-1} \right)}}{\beta } \hfill \cr =\frac{{E\left[ Y \right]\mu \left( {{e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}-1} \right)}}{{\mu +\beta \left( {1+E\left[ Y \right]} \right)}}-\frac{{E\left[ Y \right]\mu \left( {{e^{{-\beta X}}}-1} \right)}}{{\beta \left( {1+E\left[ Y \right]} \right)}} \end{array} $$
(3.41)

Taking the first derivative of service level with respect to expected WIP leads to:

$$ \begin{array}{lllll} \frac{{d\eta }}{{dE\left[ Y \right]}}= \hfill \cr -\frac{{\left( {{\mu^2}X+\left( {1+E\left[ Y \right]} \right)\beta \left( {\left( {1+E\left[ Y \right]} \right)\left( {{e^{{\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}-1} \right)+\mu X} \right)} \right)}}{{{{{\left( {1+E\left[ Y \right]} \right)}}^2}{{{\left( {\beta \left( {1+E\left[ Y \right]} \right)+\mu } \right)}}^2}}}\mu {e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}} \end{array} $$
(3.42)

which is negative because \( {e^{{\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}>1 \).

The first derivative of expected FGI lead time with respect to expected WIP is negative as well:

$$ \begin{array}{lllll} \frac{dE[I] }{{dE\left[ Y \right]}}= \hfill \cr \frac{{\left( {\left( {1+E\left[ Y \right]} \right)\left( {1-{e^{{\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}} \right)+X\beta +E\left[ Y \right]X\beta +X\mu } \right)}}{{\left( {1+E\left[ Y \right]} \right){{{\left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right)}}^2}}}\mu {e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}\mathop{<}\limits^{!}0 \hfill \cr \Leftrightarrow \left( {1+E\left[ Y \right]} \right)\left( {X\beta +\frac{{X\mu }}{{1+E\left[ Y \right]}}+1-{e^{{\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}} \right)\mathop{<}\limits^{!}0 \hfill \cr \Leftrightarrow {e^{{\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}-1\mathop{>}\limits^{!}\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X \end{array} $$
(3.43)

which holds since \( {e^x}-1> x \).

The first derivative of the expected tardiness with respect to expected WIP is positive:

$$ \begin{array}{lllll} \frac{dE[C] }{{dE\left[ Y \right]}} =\frac{{{{{\left( {1+E\left[ Y \right]} \right)}}^3}{\beta^2}+{e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}{\mu^2}\left( {1+E\left[ Y \right]+X\mu } \right)}}{{\left( {1+E\left[ Y \right]} \right)\mu {{{\left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right)}}^2}}} \hfill \cr +\frac{{2\beta \left( {1+E\left[ Y \right]} \right)+X\mu \beta {e^{{-\left( {\frac{\mu }{{1+E\left[ Y \right]}}+\beta } \right)X}}}}}{{{{{\left( {\mu +\beta \left( {1+E\left[ Y \right]} \right)} \right)}}^2}}}>0 \end{array} $$
(3.44)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Altendorfer, K. (2014). Single-Stage Service Level and Tardiness Model. In: Capacity and Inventory Planning for Make-to-Order Production Systems. Lecture Notes in Economics and Mathematical Systems, vol 671. Springer, Cham. https://doi.org/10.1007/978-3-319-00843-1_3

Download citation

Publish with us

Policies and ethics