Skip to main content

Dynamic Analysis and Design of Turbine

  • Chapter
  • First Online:
The Kuroshio Power Plant

Part of the book series: Lecture Notes in Energy ((LNEN,volume 15))

  • 842 Accesses

Abstract

Under the action of the Kuroshio, the turbine anchored by a single cable on the relay platform shall experience complicated reaction to the strong current, among which the displacement of the turbine swift with the current, the deformation of the turbine body due to the forces applied by the current, and the vibration of the turbine due to the dynamic effects in various respects are all important problems to be solved to make a turbine of great power efficiency. On the other hand, the power efficiency of turbine correlates closely with its structure stiffness. To analyze the stiffness of the turbine, one shall investigate the reaction force applied on each component of the turbine, the dynamical effects due to the vortex shedding generated from rotor, the high-frequency force variation due to the turbulence, the impact due to the phase difference between rotors, and the cavitation possibly occurring on the rotor blade so that the design of turbine can be carried out. In this chapter, we employ the computational fluid dynamic to explore the time-dependent dynamic forces applied on the turbine under the action of the Kuroshio, and the results are compared with those obtained by blade element momentum (BEM) theory to confirm the accuracy of the CFD results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robson JH (2007) Submersible electrical power generating plant. US Patent 7291936B1, 6 Nov 2007

    Google Scholar 

  2. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2008) The prediction of the hydrodynamic performance of marine current turbines. Renew Energy 33(5):1085–1096. doi:10.1016/j.renene.2007.05.043

    Article  Google Scholar 

  3. ANSYS FLUENT 12.1 User Manual

    Google Scholar 

  4. Duque EPN, Burklund MD, Johnson W (2003) Navier–stokes and comprehensive analysis performance predictions of the NREL phase VI experiment. J Sol Energy Eng 125:457–467. doi:10.1115/1.1624088

    Article  Google Scholar 

  5. Sørensen NN, Michelsen JA, Schreck S (2002) Navier–stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft × 120 f. wind tunnel. Wind Energy 5:151–169. doi:10.1002/we.64

    Article  Google Scholar 

  6. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605. doi:10.2514/3.12149

    Article  Google Scholar 

  7. Wilcox DC (1993) Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA J 31:1414–1421. doi:10.2514/3.11790

    Article  MATH  Google Scholar 

  8. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in 3-dimensional parabolic flow. Int J Heat Mass Transf 15(10):1787–1806. doi:10.1016/0017-9310(72)90054-3

    Article  MATH  Google Scholar 

  9. Turnock SR, Phillips AB, Banks J, Nicholls-Lee R (2011) Modelling tidal current turbine wakes using a coupled RANS-BEMT approach as a tool for analysing power capture of arrays of turbines. Ocean Eng 38(11–12):1300–1307. doi:10.1016/j.oceaneng.2011.05.018

    Article  Google Scholar 

  10. Lee SH, Jang K, Lee J, Hurt N (2010) A numerical study for the optimal arrangement of ocean current turbine generators in the ocean current power parks. Curr Appl Phys 10:S137–S141. doi:10.1016/j.cap.2009.11.018

    Article  Google Scholar 

  11. Myers LE, Bahaj AS (2010) Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators. Ocean Eng 37(2–3):218–227. doi:10.1016/j.oceaneng.2009.11.004

    Article  Google Scholar 

  12. Harrison ME, Batton WMJ, Myers LE, Bahaj AS (2010) Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. Renew Power Gen 4(6):613–627. doi:10.1049/iet-rpg.2009.0193

    Article  Google Scholar 

  13. Bahaj AS, Myers LE, Thompson G. Characterising the wake of horizontal axis marine current turbines. In: Proceedings of the 7th European wave and tidal energy conference, Porto, Portugal, 11–14 Sept 2007

    Google Scholar 

  14. Myers L, Bahaj AS (2007) Wake studies of a 1/30th scale horizontal axis marine current turbine. Ocean Eng 34:758–762. doi:10.1016/j.oceaneng.2006.04.013

    Article  Google Scholar 

  15. Myers LE, Bahaj AS (2012) An experimental investigation simulating flow effects in first generation marine current energy converter arrays. Renew Energy 37(1):28–36. doi:10.1016/j.renene.2011.03.043

    Article  Google Scholar 

  16. Bahaj AS, Batten WMJ, McCann G (2007) Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renew Energy 32(15):2479–2490. doi:10.1016/j.renene.2007.10.001

    Article  Google Scholar 

  17. Bahaj AS, Molland AF, Chaplin JR (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32:407–426. doi:10.1016/j.renene.2006.01.012

    Article  Google Scholar 

  18. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2007) Experimentally validated numerical method for the hydrodynamic design of horizontal axis tidal turbines. Ocean Eng 34(7):1013–1020. doi:10.1016/j.oceaneng.2006.04.008

    Article  Google Scholar 

  19. Batten WMJ, Bahaj AS, Molland AF, Chaplin JR (2006) Hydrodynamics of marine current turbines. Renew Energy 31(2):249–256. doi:10.1016/j.renene.2005.08.020

    Article  Google Scholar 

  20. Zanette J, Imbault D, Tourabi A (2010) A design methodology for cross flow water turbines. Renew Energy 35:997–1009. doi:10.1016/j.renene.2009.09.014

    Article  Google Scholar 

  21. Goundar JN, Ahmed MR, Lee Y-H (2011) Numerical and experimental studies on hydrofoils for marine current turbines. Renew Energy 42:173–179. doi:10.1016/j.renene.2011.07.048

    Article  Google Scholar 

  22. White FM (1999) Fluid mechanics, 4th edn. McGraw-Hall, New York

    Google Scholar 

  23. VanZwieten J, Driscoll FR, Leonessa A, Deane G (2006) Design of a prototype ocean current turbine—part I: mathematical modeling and dynamics simulation. Ocean Eng 33:1485–1521. doi:10.1016/j.oceaneng.2005.10.005

    Article  Google Scholar 

  24. VanZwieten J, Driscoll FR, Leonessa A, Deane G (2006) Design of a prototype ocean current turbine—part II: flight control system. Ocean Eng 33:1522–1551. doi:10.1016/j.oceaneng.2005.10.006

    Article  Google Scholar 

  25. Brown DT, Mavrakos S (1999) Comparative study on mooring line dynamic loading. Mar Struct 12(3):131–151. doi:10.1016/S0951-8339(99)00011-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, F. (2013). Dynamic Analysis and Design of Turbine. In: The Kuroshio Power Plant. Lecture Notes in Energy, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-00822-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00822-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00821-9

  • Online ISBN: 978-3-319-00822-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics