Skip to main content

Conceptual Design of Kuroshio Power Plant

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 15))

Abstract

The design of a Kuroshio power plant begins with the selection of turbine. Once the turbine is chosen, the turbine anchoring system will be designed accordingly, followed by the designs of construction procedure and relevant equipments. Figure 2.1 shows the conceptual design of the Kuroshio power plant, which was made under a major concern that the design must securely anchor hundreds of turbines in deep ocean under the action of a dynamical force of hundreds of thousands of Newton. This is an unprecedented challenge stemming mainly from the design of an effective anchorage system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khan J, Bhuyan GS (2009) Ocean energy: global technology development status. Report prepared by Powertech Labs Inc. for the IEA-OES

    Google Scholar 

  2. Ben Elghali SE, Balme R, Le Saux K, Benbouzid MEH, Charpentier JF, Hauville F (2007) A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine. IEEE J Oceanic Eng 32(4):786–797. doi:10.1109/JOE.2007.906381

    Article  Google Scholar 

  3. Thake J (2005) Development, installation and testing of a large-scale tidal current turbine. IT Power, http://webarchive.nationalarchives.gov.uk/+/, http://www.berr.gov.uk/files/file18130.pdf. Accessed 29 Jun 2013

  4. Coiro DP, Nicolosi F, De Marco A, Melone S, Montella F (2005) Dynamic behavior of novel vertical axis tidal current turbine: numerical and experimental investigations. In: Chung JS, Hong SW, Koo J, Komai T, Koterayama W (eds) The proceedings of 15th international offshore and polar engineering conference, Seoul, Korea, 19–24 June 2005

    Google Scholar 

  5. Zanette J, Imbault D, Tourabi A (2010) A design methodology for cross flow water turbines. Renew Energy 35(5):997–1009. doi:10.1016/j.renene.2009.09.014

    Article  Google Scholar 

  6. Bahaj AS, Molland AF, Chaplin JR, Batten WMJ (2007) Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew Energy 32(3):407–426. doi:10.1016/j.renene.2006.01.012

    Article  Google Scholar 

  7. VanZwieten J, Driscoll FR, Leonessa A, Deane G (2006) Design of a prototype ocean current turbine – part I: mathematical modeling and dynamics simulation. Ocean Eng 33:1485–1521. doi:10.1016/j.oceaneng.2005.10.005

    Article  Google Scholar 

  8. VanZwieten J, Driscoll FR, Leonessa A, Deane G (2006) Design of a prototype ocean current turbine – part II: flight control system. Ocean Eng 33:1522–1551. doi:10.1016/j.oceaneng.2005.10.006

    Article  Google Scholar 

  9. Hermans AJ (2003) The ray method for the deflection of a floating flexible platform in short waves. J Fluids Struct 17(4):593–602. doi:10.1016/S0889-9746(02)00148-2

    Article  Google Scholar 

  10. Garrett DL (2005) Coupled analysis of floating production systems. Ocean Eng 32:802–816. doi:10.1016/j.oceaneng.2004.10.010

    Article  Google Scholar 

  11. Shafieefar M, Rezvani A (2007) Mooring optimization of floating platforms using a genetic algorithm. Ocean Eng 34:1413–1421. doi:10.1016/j.oceaneng.2006.10.005

    Article  Google Scholar 

  12. Chakrabarti S (2009) State of offshore structure development and design challenges. In: Kim YC (ed) Handbook of coastal and ocean engineering. World Scientific, Singapore, pp 667–694

    Chapter  Google Scholar 

  13. Brown DT, Lyons GJ, Lin HM (1997) Large scale testing for mooring line hydrodynamic damping contributions at combined wave and drift frequencies. In: Proceedings of BOSS, vol 2. Oxford, Pergamon, pp 397–406

    Google Scholar 

  14. Brown DT, Mavrakos S (1999) Comparative study of mooring line dynamic loading. J Mar Struct 12(3):131–151. doi:10.1016/S0951-8339(99)00011-8

    Article  Google Scholar 

  15. Hinz ER (2001) The complete book of anchoring and mooring, 2nd revised edn. Cornell Maritime, Centreville, MA

    Google Scholar 

  16. Poiraud A, Ginsberg-Klemmt A, Ginsberg-Klemmt E (2007) The complete anchoring handbook: stay put on any bottom in any weather. International Marine/Ragged Mountain (McGraw-Hill)

    Google Scholar 

  17. Bungartz H-J, Schäfer M (eds) (2006) Fluid–structure interaction: modelling, simulation, optimization. Springer, Berlin

    Google Scholar 

  18. Paidoussis MP (1998) Fluid–structure interactions: slender structures and axial flow. Academic, San Diego, CA

    Google Scholar 

  19. Ablow CM, Schechter S (1983) Numerical simulation of undersea cable dynamics. Ocean Eng 10(6):443–457. doi:10.1016/0029-8018(83)90046-X

    Article  Google Scholar 

  20. Kim YC (2010) Handbook of coastal and ocean engineering. World Scientific, Singapore

    Google Scholar 

  21. Kutt LM, Pifko AB, Nardiello JA, Papazian JM (1998) Slow-dynamic finite element simulation of manufacturing processes. Comput Struct 66(1):1–17. doi:10.1016/S0045-7949(97)00069-2

    Article  MATH  Google Scholar 

  22. Lewis WJ (2003) Tension structures: form and behaviour. Thomas Telford, London

    Book  Google Scholar 

  23. Hallam MG, Heaf NJ, Wooton JR (1997) Dynamics of marine structures. Report UR8 CIRA Underwater Engineering Group, London

    Google Scholar 

  24. Liu CS (2008) Geological physical survey, earthquake monitoring and disaster assessment. A proposal submitted to National Science Council, Taiwan

    Google Scholar 

  25. Hardisty J (2009) The analysis of tidal stream power. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  26. Finkl CW, Charlier R (2009) Electrical power generation from ocean currents in the Straits of Florida: some environmental considerations. Renew Sustain Energy Rev 13:2597–2604. doi:10.1016/j.rser.2009.03.005

    Article  Google Scholar 

  27. Wright SH, Chowdhury SP, Chowdhury S (2011) A feasibility study for marine energy extraction from the Agulhas Current. In: 2011 I.E. Power and Energy Society general meeting, p 9. doi:10.1109/PES.2011.6039896

    Google Scholar 

  28. http://www.monoist.atmarkit.co.jp/mn/articles/1111/29/news007.html (in Japanese). Accessed 20 Mar 2013

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, F. (2013). Conceptual Design of Kuroshio Power Plant. In: The Kuroshio Power Plant. Lecture Notes in Energy, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-00822-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00822-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00821-9

  • Online ISBN: 978-3-319-00822-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics