Skip to main content

Hydrology, Ecology, and Environment of Kuroshio Waters

  • Chapter
  • First Online:
The Kuroshio Power Plant

Part of the book series: Lecture Notes in Energy ((LNEN,volume 15))

  • 890 Accesses

Abstract

Taiwan’s Kuroshio and Florida’s Gulf Stream are both referred to as Western Intensified Flows because they both increase in velocity as they progress westward, which, as indicated by Stommel [1], is caused by variation of the Coriolis force with latitude. In both cases, the atmospheric circulation is recognized as the major driving force behind this increase. In both the Atlantic (for the Gulf Stream) and the Pacific (for the Kuroshio), the atmospheric circulation is established through a western wind (i.e., blowing from west to east) between 30°N and 45°N and an eastern wind between 15°N and 30°N. This clockwise vortex (or gyre) extrudes to the west to enhance the strength of the current along the western shores, thus creating the current. These two circulatory currents in the northern Hemisphere are referred to as Geostrophic Currents [2, p. 193], striking a balance among three forces: flow momentum of the current, the Coriolis force, and static pressure due to sea level difference. The Coriolis force and static pressure are both induced by the reaction to the flow momentum, which accordingly must be sufficiently large to support these two forces. This indicates that the force to drive Kuroshio shall be extraordinary large to maintain the large momentum required to not only balance the other two forces but also to counter act the friction loss occurred in such a large-scale current. This also explains why the mass flow rate of Gulf Stream increases significantly (up to three times larger) when it reaches its northern boundary [2, p. 513].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stommel H (1948) The westward intensification of wind-driven ocean currents. Am Geophys Union Trans 29(2):202–206

    Article  Google Scholar 

  2. Gill AE (1982) Atmosphere-ocean dynamics. Academic, New York

    Google Scholar 

  3. Kawai H (1998) A brief history of recognition of the Kuroshio. Prog Oceanogr 41:505–578. doi:10.1016/S0079-6611(98)00024-X

    Article  Google Scholar 

  4. Nakano H, Tsujino H, Furue R (2008) The Kuroshio current system as a jet and twin relative recirculation gyres embedded in the sverdrup circulation. Dyn Atmos Oceans 45:135–164. doi:10.1016/j.dynatmoce.2007.09.002

    Article  Google Scholar 

  5. Kurogi M, Akitomo K (2006) Effects of stratification on the stable paths of the Kuroshio and on their variation. Deep Sea Res 53:1564–1577. doi:10.1016/j.dsr.2006.07.003

    Article  Google Scholar 

  6. Tang TY, Tai JH, Yang YJ (2000) The flow pattern north of Taiwan and the migration of the Kuroshio. Cont Shelf Res 10:349–371. doi:10.1016/S0278-4343(99)00076-X

    Article  Google Scholar 

  7. Wang J, Chern C-S (1988) On the Kuroshio branch in the Taiwan strait during winter time. Prog Oceanogr 21:469–491. doi:10.1016/0079-6611(88)90022-5

    Article  Google Scholar 

  8. Qiu B (2001) Kuroshio and Oyashio currents. In: Thorpe S, Steve A, Turekian K, Karl K (eds) Encyclopedia of ocean sciences. Academic, New York, pp 1413–1425

    Chapter  Google Scholar 

  9. Chen F (2010) Kuroshio power plant development plan. Renew Sust Energy Rev 14:2655–2668. doi:10.1016/j.rser.2010.07.070

    Article  Google Scholar 

  10. Munk WH (1950) On the wind-driven ocean circulation. J Meteorol 7(2):79–93

    Article  Google Scholar 

  11. Uda M (1949) On the correlated fluctuation of the Kuroshio current and the cold water mass. J Oceanogr Mag 1:1–12

    Google Scholar 

  12. Suda K (1943) Kaiyo-Kagaku (in Japanese). Kokin Shoin, Tokyo, p 726

    Google Scholar 

  13. Yosida S (1960) On the short period variation of the Kuroshio in the adjacent sea of Izu islands. J Hydrogr Bull 65:1–18 (in Japanese)

    Google Scholar 

  14. Nan’niti T (1958) A theory of the mechanism of the generation of the cold water region in the offing of Enshu-nada. Pap Meteorol Geophys 8:317–331

    Google Scholar 

  15. Nan’niti T (1960) Long-period fluctuations in the Kuroshio. Pap Meteorol Geophys 11:339–347

    Google Scholar 

  16. Hsin YC, Wu CR, Shaw PT (2008) Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: a numerical study. J Geophys Res 113, C04002. doi:10.1029/2007JC004485

    Article  Google Scholar 

  17. Sheu WJ, Wu CR, Oey LY (2010) Blocking and westward passage of Eddies in the Luzon strait. J Deep Sea Res Part II 57:1783–1791. doi:10.1016/j.dsr2.2010.04.004

    Article  Google Scholar 

  18. Chen HT, Yan XH (1996) A numerical simulation of wind stress and topographic effects on the Kuroshio current path near Taiwan. J Phys Oceanogr 26:1769–1802. doi:10.1175/1520-0485(1996)026<1769:ANSOWS>2.0.CO;2

    Article  Google Scholar 

  19. Sekine Y (1990) A numerical experiment on the path dynamics of the Kuroshio with reference to the formation of the large meander path south of Japan. J Deep Sea Res 37(3):359–380. doi:10.1016/0198-0149(90)90014-M

    Article  Google Scholar 

  20. Feng M, Mitsudera H, Yoshikawa Y (2000) Structure and variability of the Kuroshio current in Tokara strait. J Phys Oceanogr 30:2257–2276

    Article  Google Scholar 

  21. Akitomo K (2008) Effects of stratification and mesoscale eddies on Kuroshio path variation south of Japan. J Deep Sea Res Part I 55:997–1008. doi:10.1016/j.dsr.2008.03.013

    Article  Google Scholar 

  22. Qiu B, Miao WF (2000) Kuroshio path variations south of Japan: bimodality as a self-sustained internal oscillation. J Phys Oceanogr 30:2124–2137

    Article  Google Scholar 

  23. Deser C (1999) Evidence for a wind-driven intensification of the Kuroshio current extension from the 1970s to the 1980s. J Climate 12:1697–1706. doi:10.1175/1520-0442(1999)012<1697:EFAWDI>2.0.CO;2

    Article  Google Scholar 

  24. Naeije MC, Ambrosius BAC (2000) Seasonal cycle and inter-annual variability of the Kuroshio/Oyashio current system using multi-channel sea surface temperature and altimetry sea level data. J Adv Space Res 25(5):1103–1106. doi:10.1016/S0273-1177(99)00870-4

    Article  Google Scholar 

  25. Kawabe M (1985) Sea level variations at the Izu islands and typical stable paths of the Kuroshio. J Oceanogr Soc Japan 41:307–326. doi:10.1007/BF02109238

    Article  Google Scholar 

  26. Kawabe M (1995) Variation of current path, velocity, and volume transport of the Kuroshio in relation with the large meander. J Phys Oceanogr 25:3103–3117. doi:10.1175/1520-0485(1995)025<3103:VOCPVA>2.0.CO;2

    Article  Google Scholar 

  27. Taft B (1972) Characteristics of the flow of the Kuroshio South of Japan. In: Stommel H, Yoshida K (eds) Kuroshio: its physical aspects. University of Tokyo Press, Tokyo, pp 165–216

    Google Scholar 

  28. Robinson AR, Niiler PP (1967) The theory of free inertial currents I. Path and structure. Tellus 19:269–291. doi:10.1111/j.2153-3490.1967.tb01482.x

    Article  Google Scholar 

  29. White WB, McCreary JP (1976) On the formation of the Kuroshio meander and its relationship to the large-scale ocean circulation. Deep Sea Res 23:33–47. doi:10.1016/0011-7471(76)90806-8

    Google Scholar 

  30. Sun L, Yang YJ, Gu YF (2009) Impacts of typhoons on the Kuroshio large meander: observation evidences. J Atmos Ocean Sci Lett 2:45–50

    Google Scholar 

  31. Chen CT, Liu CT, Chuang WS, Yang YJ, Shiah FK, Tang TY, Chung SW (2003) Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern east China sea. J Mar Syst 42:65–79. doi:10.1016/S0924-7963(03)00065-4

    Article  Google Scholar 

  32. Hung CC, Gong GC, Chou W-C, Chung CC, Lee MA, Chang Y, Chen HY, Huang SJ, Yang Y, Yang WR, Chung WC, Li SL, Laws E (2010) The effect of typhoon on particulate organic carbon flux in the southern east China sea. J Biogeosci discuss 7:3521–3550. doi:10.5194/bgd-7-3521-2010

    Article  Google Scholar 

  33. Andres M, Park J-H, Wimbush M, Zhu XH, Chang KI, Ichikawa H (2008) Study of the Kuroshio/Ryukyu current system based on satellite-altimeter and in situ measurements. J Oceanogr 64:937–950. doi:10.1007/s10872-008-0077-2

    Article  Google Scholar 

  34. Johns WE, Lee TN, Zhang D, Zantopp R (2001) The Kuroshio east of Taiwan: moored transport observations from WOCE PCM-1 array. Am Meteorol Soc 31:1031–1053. doi:10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2

    Google Scholar 

  35. Chen WS (2002) The rocks in Taiwan. In: 2002 Taiwan rock engineering symposium, pp 17–23

    Google Scholar 

  36. Kao H, Huang GC, Liu CS (2000) Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: constraints from bathymetry and seismic observations. J Geophys Res 105:3059–3079. doi:10.1029/1999JB900357

    Article  Google Scholar 

  37. Liu CS, Liu SY, Lallemand SE, Lundberg N, Reed D (1998) Digital elevation model offshore Taiwan and its tectonic implications. Terr Atmos Ocean Sci 9:705–738

    Google Scholar 

  38. Chen WS (2005) The geology of the coastal range—the coastal range—deep tourism of longitudinal valley—an introduction. Translated from http://ashan.gl.ntu.edu.tw/chinese/GeoPark/SeacoastSierraGeology/SeacoastSierraGeology01/print/SeacoastSierraGeology01.pdf. Accessed 19 Mar 2013

  39. Hsu SK, Liu CS, Shyu CT, Liu SY, Sibuet JC, Lallemand SE, Wang C, Reed D (1998) New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terr Atmos Ocean Sci 9:509–532

    Google Scholar 

  40. Liu KK, Gong GC, Shyu CZ, Pai SC, Wei CL, Chao SY (1992) Response of Kuroshio upwelling to the onset of the northeast monsoon in the sea north of Taiwan: observations and a numerical simulation. J Geophys Res 97:12511–12526. doi:10.1029/92JC01179

    Article  Google Scholar 

  41. Juang WS, Chen JC, Chang JG (2005) The topographic landscapes of volcanic necks in the Coastal Range, Lutao, and Lanyu, eastern Taiwan (in Chinese). Bull Central Geol Surv 14:108–148

    Google Scholar 

  42. Tang TY, He CR, Wang YH, Jan S, Hsu SK, Wen LS, Yang TY, Song SR, Chen HY, Song GS, Chang TY, Chiao LY (2008–2010) Comprehensive research on the natural resources of the east waters of Taiwan: a precisely topographic, geological, hydrological, and ecological surveys of the waters around Green Island. A research report of the project sponsored by National Science Council

    Google Scholar 

  43. Sinotech Engineering Consultants (2006) Metropolitan area and the periphery sloping integrated environmental and geological databases to build a sloping rock engineering survey study (5/5) The final report of the eastern region of Taiwan (in Chinese). Bulletin of the Central Geological Survey, vol 95–21, project number: 5226902000-03-95-21

    Google Scholar 

  44. Chen CTA, Liu CT, Pai SC (1995) Variations in oxygen, nutrient and carbonate fluxes of the Kuroshio current. La Mer 33:161–176

    Google Scholar 

  45. Dai CF (1993) The ocean of Taiwan (in Chinese). Walkers Cultural Corporation, Taipei, Taiwan. ISBN 986-7630-00-9

    Google Scholar 

  46. Wang ZF, Gong M, Lu Y, Ruan Z, Qiu HY, Wang H (1992) Analysis of Cu, Cd, Co, and Ni in surface water of the Kuroshio area in the east China sea. Chin J Oceanogr Limnol 10:223–230. doi:10.1007/BF02843823

    Article  Google Scholar 

  47. Hung JJ, Chan CL (1998) Distribution and enrichment of particulate trace metals in the southern east China sea. Geochem J 32:189–203

    Article  Google Scholar 

  48. Hsiao SH, Hwang JS, Fang TH (2011) Copepod species and their trace metal contents in coastal northern Taiwan. J Mar Syst 88:232–238. doi:10.1016/j.jmarsys.2011.04.009

    Article  Google Scholar 

  49. Azam F, Fenchel T, Field JG, Grey JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263. doi:10.3354/meps010257

    Article  Google Scholar 

  50. Takahashi M, Kikuchi K, Hara Y (1985) Importance of picocyanobacteria biomass (unicellular, blue-green algae) in the phytoplankton population of the coastal waters off Japan. Mar Biol 89:63–69. doi:10.1007/BF00392878

    Article  Google Scholar 

  51. Chen LYL (1995) Phytoplankton composition and productivity in response to the upwelling off northeastern Taiwan. Proc Natl Sci Counc Repub China B 19:66–72

    Google Scholar 

  52. Chang J, Shiah FK, Gong GC, Chiang KP (2003) Cross-shelf variation in carbon-to-chlorophyll a ratios in the east China sea, summer 1998. Deep Sea Res Part II 50:1237–1247. doi:10.1016/S0967-0645(03)00020-1

    Article  Google Scholar 

  53. Chen LYL, Chen HY, Jan S, Tuo SH (2009) Phytoplankton productivity enhancement and assemblage change in the upstream Kuroshio after typhoons. Mar Ecol Prog Ser 385:111–126. doi:10.3354/meps08053

    Article  Google Scholar 

  54. Gong GC, Shiah FK, Liu KK, Wen YH, Liang MH (2000) Spatial and temporal variation of chlorophyll a, primary productivity and chemical hydrography in the southern east China Sea. Cont Shelf Res 20:411–436

    Article  Google Scholar 

  55. Shiah FK, Chen TY, Gong GC, Chen CC, Chiang KP, Hung JJ (2001) Differential coupling of bacterial and primary production in mesotrophic and oligotrophic systems of the east China Sea. Aquat Microb Ecol 23:273–282

    Article  Google Scholar 

  56. Yang TN, Wei KY, Gong GC (2001) Distribution of coccolithophorids and coccoliths in surface ocean off northeastern Taiwan. Bot Bull Acad Sini 42:287–302

    Google Scholar 

  57. Chung JL, Shiah FK, Gong GC, Chiang KP (2009) Trophic cascading of medusae on the relationship between copepods and diatoms in a subtropical coastal ecosystem. Terr Atmos Ocean Sci 20:547–556. doi:10.3319/TAO.2008.05.23.01(Oc)

    Article  Google Scholar 

  58. Huys R, Boxshall G (1991) Copepod evolution. The Royal Society, London. ISBN 0903874210

    Google Scholar 

  59. Shih CT, Chiu TS (1998) Copepod diversity in the water masses of the southern east China sea north of Taiwan. J Mar Syst 15:533–542. doi:10.1016/S0924-7963(97)00053-5

    Article  Google Scholar 

  60. Lee CY, Liu DC, Su WC (2009) Seasonal spatial variations in the planktonic copepod community of Ilan Bay and adjacent Kuroshio water off northeastern Taiwan. Zool Stud 48:151–161

    Google Scholar 

  61. Hwang JS, Dahms HU, Tseng LC, Chen QC (2007) Intrusions of the Kuroshio current in the northern south China sea affect copepod assemblages of the Luzon strait. J Exp Mar Biol Ecol 352:12–27. doi:10.1016/j.jembe.2007.06.034

    Article  Google Scholar 

  62. Hsiao SH, Fang TH, Shih CT, Hwang JS (2011) Effects of the Kuroshio current on copepod assemblages in Taiwan. Zool Stud 50:475–490

    Google Scholar 

  63. Lo WT, Shih CT, Hwang JS (2004) Diel vertical migration of the planktonic copepods at an upwelling station north of Taiwan, Western North Pacific. J Plankton Res 26:89–97. doi:10.1093/plankt/fbh004

    Article  Google Scholar 

  64. Chiu TS, Hsyu YH (1994) Interannual variation of ichthyoplankton density and species composition in the waters off northeastern Taiwan. Mar Biol 119:441–448. doi:10.1007/BF00347541

    Article  Google Scholar 

  65. Su WC, Lo WS, Liu DC, Wu LJ, Hsieh HY (2011) Larval fish assemblages in the Kuroshio water east of Taiwan during two distinct monsoon seasons. Bull Mar Sci 87:13–29. doi:10.5343/bms.2010.1010

    Article  Google Scholar 

  66. Lo WT, Hsieh HY, Wu LJ, Jian HB, Liu DC, Su WC (2010) Comparison of larval fish assemblages between during and after northeasterly monsoon in the waters around Taiwan, west north Pacific. J Plankton Res 32:1079–1095

    Article  Google Scholar 

  67. Hsieh HY, Lo WT, Liu DC, Hsu PK, Su WC (2007) Winter spatial distribution of fish larvae assemblages relative to the hydrography of the waters surrounding Taiwan. Environ Biol Fishes 78:333–346

    Article  Google Scholar 

  68. Nishikawa J, Tsuda A, Ishigaki T, Terazaki M (1995) Distribution of euphausiids in the Kuroshio front and warm water tongue with special reference to the surface aggregation of Euphausia pacifica. J Plankton Res 17:611–629

    Article  Google Scholar 

  69. Terazaki M (1992) Horizontal and vertical distribution of chaetognaths in a Kuroshio warm-core ring. Deep-Sea Res 39(suppl 1):S231–S245. doi:10.1016/S0198-0149(11)80014-2

    Article  Google Scholar 

  70. Chen JP, Jan RQ, Kuo JW, Huang CH, Chen CY (2009) Fish fauna around green island. J Natl Park 19:23–45

    Google Scholar 

  71. Chang KH, Jan RQ, Shao KT (1983) Community ecology of the marine fishes on LuTao Island, Taiwan. Bull Inst Zool, Acad Sini 22:141–155

    Google Scholar 

  72. National museum of marine biology and aquarium: beauty and sadness of Lan-Yu. http://210.243.41.4/activity/tao/. Accessed 19 Mar 2013

  73. Kimura S, Kato Y, Kitagawa T, Yamaoka N (2010) Impact of environmental variability and global warming scenario on Pacific Bluefin tuna (Thunnus orientalis) spawning grounds and recruitment habitat. Prog Oceanogr 86:39–44

    Article  Google Scholar 

  74. Kitagawa T, Nakata H, Kimura S, Itoh T, Tsuji S, Nitta A (2000) Effect of ambient temperature on the vertical distribution and movement of Pacific Bluefin tuna Thunnus orientalis. Mar Ecol Prog Ser 206:251–260. doi:10.3354/meps206251

    Article  Google Scholar 

  75. Kimura S, Nakai M, Sugimoto T (1997) Migration of albacore, Thunnus alalunga, in the North Pacific Ocean in relation to large oceanic phenomena. Fish Oceanogr 6:51–57

    Article  Google Scholar 

  76. Chiou WD, Lee LK (2004) Migration of kawakawa Euthynnus affinis in the waters near Taiwan. Fish Sci 70:746–757. doi:10.1111/j.1444-2906.2004.00867.x

    Article  Google Scholar 

  77. Watanabe H, Kubodera T, Yokawa K (2009) Feeding ecology of the swordfish Xiphias gladius in the subtropical region and transition zone of the western North Pacific. Mar Ecol Prog Ser 396:111–122. doi:10.3354/meps08330

    Article  Google Scholar 

  78. Chou LS (2004) History of the marine mammals study in Taiwan. Natl Sci Mus Monogr 24:129–138

    Google Scholar 

  79. Hsu HH, Joung SJ, Liao YY, Liu KM (2007) Satellite tracking of juvenile whale shark, Rhincodon typus, in the Northwestern Pacific. Fish Res 84:25–31. doi:10.1016/j.fishres.2006.11.030

    Article  Google Scholar 

  80. Gong GC, Liu KK, Pai SC (1995) Prediction of nitrate concentration from two end member mixing in the east China sea. Cont Shelf Res 15:827–842. doi:10.1016/0278-4343(94)00039-P

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, F. (2013). Hydrology, Ecology, and Environment of Kuroshio Waters. In: The Kuroshio Power Plant. Lecture Notes in Energy, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-00822-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00822-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00821-9

  • Online ISBN: 978-3-319-00822-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics