Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold

  • Vincent GuedjEmail author
Part of the Lecture Notes in Mathematics book series (LNM, volume 2086)


The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian–Zhu: on a Kähler–Einstein Fano manifold with discrete automorphism group, the normalized Kähler–Ricci flow converges smoothly to the unique Kähler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.


Cohomology Class Ricci Soliton Ricci Flow DelPezzo Surface Fano Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank D.H.Phong for patiently explaining several aspects of the proof of this result.


  1. [Aub78]
    T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)MathSciNetzbMATHGoogle Scholar
  2. [BM87]
    S. Bando, T. Mabuchi, Uniqueness of Einstein Kähler metrics modulo connected group actions, in Algebraic Geometry (Sendai, 1985), ed. by T. Oda. Advanced Studies in Pure Mathematics, vol. 10 (Kinokuniya, 1987), pp. 11–40 (North-Holland, Amsterdam, 1987)Google Scholar
  3. [BBGZ13]
    R. Berman, S. Boucksom, V. Guedj, A. Zeriahi, A variational approach to complex Monge-Ampère equations. Publ. Math. I.H.E.S. 117, 179–245 (2013)Google Scholar
  4. [BBEGZ11]
    R. Berman, S. Boucksom, P.Eyssidieux, V. Guedj, A. Zeriahi, Kähler–Ricci flow and Ricci iteration on log-Fano varieties (2011). Preprint [arXiv]Google Scholar
  5. [Bern11]
    B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem (2011). Preprint [arXiv:1103.0923]Google Scholar
  6. [BEGZ10]
    S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Cao85]
    H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [CLW09]
    X.X. Chen, H. Li, B. Wang, Kähler–Ricci flow with small initial energy. Geom. Funct. Anal. 18 (5), 1525–1563 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [CheT02]
    X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein surfaces. Invent. Math. 147(3), 487–544 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Chow91]
    B. Chow, The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)zbMATHGoogle Scholar
  11. [CSz12]
    T. Collins, G. Székelyhidi, The twisted Kähler–Ricci flow (2012). Preprint [arXiv:1207.5441]Google Scholar
  12. [Ding88]
    W.-Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics. Math. Ann. 282, 463–471 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. [DT92]
    W.-Y. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [Don08]
    S.K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, in Handbook of Geometric Analysis, No. 1. Advanced Lectures in Mathematics (ALM), vol. 7 (International Press, Somerville, 2008), pp. 29–75Google Scholar
  15. [Gill11]
    M. Gill, Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19(2), 277–303 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [GZ05]
    V. Guedj, A. Zeriahi, Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [GZ07]
    V. Guedj, A. Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250, 442–482 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Ham88]
    R. Hamilton, The Ricci flow on surfaces, in Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemporary Mathematics, vol. 71 (American Mathematical Society, Providence, 1988), pp. 237–262Google Scholar
  19. [Kol98]
    S. Kołodziej, The complex Monge-Ampère equation. Acta Math. 180(1), 69–117 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [Li08]
    H. Li, On the lower bound of the K-energy and F-functional. Osaka J. Math. 45(1), 253–264 (2008)MathSciNetzbMATHGoogle Scholar
  21. [PSS07]
    D.H. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler–Ricci flow. Comm. Anal. Geom. 15(3), 613–632 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [PSSW08a]
    D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Moser-Trudinger inequality on Kähler-Einstein manifolds. Am. J. Math. 130(4), 1067–1085 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [PS06]
    D.H. Phong, J. Sturm, On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)MathSciNetzbMATHGoogle Scholar
  24. [PS10]
    D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in Handbook of Geometric Analysis, No. 3. Advanced Lectures in Mathematics (ALM), vol. 14 (International Press, Somerville, 2010), pp. 357–436Google Scholar
  25. [SeT08]
    N. Sesum, G. Tian, Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. [ShW11]
    M. Sherman, B. Weinkove, Interior derivative estimates for the Kähler–Ricci flow (2011). Preprint [arXiv]Google Scholar
  27. [Siu87]
    Y.T. Siu, in Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. DMV Seminar, vol. 8 (Birkhäuser, Basel, 1987)Google Scholar
  28. [Tian90]
    G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Tian97]
    G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 239–265 (1997)CrossRefGoogle Scholar
  30. [TZ07]
    G. Tian, X. Zhu, Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. [Tos12]
    V. Tosatti, Kähler-Einstein metrics on Fano surfaces Expo. Math. 30(1), 11–31 (2012)MathSciNetzbMATHGoogle Scholar
  32. [Villani]
    C. Villani, Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338 (Springer-Verlag, Berlin, 2009), xxii + 973 pp.Google Scholar
  33. [WZ04]
    X.J. Wang, X. Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. [Yau78]
    S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar
  35. [Zer01]
    A. Zeriahi, Volume and capacity of sublevel sets of a Lelong class of psh functions. Indiana Univ. Math. J. 50(1), 671–703 (2001)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut de Mathématiques de Toulouse and Institut Universitaire de FranceUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations