Skip to main content

An Introduction to the Kähler–Ricci Flow

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2086))

Abstract

These notes give an introduction to the Kähler–Ricci flow. We give an exposition of a number of well-known results including: maximal existence time for the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the Kähler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, we discuss the connection between the flow and the minimal model program with scaling, the behavior of the flow on general Kähler surfaces and some other recent results and conjectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Aubin, Equation de type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. 102, 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. T. Aubin, in Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren der Mathematischen Wissenschaften, vol. 252 (Springer, New York, 1982)

    Google Scholar 

  3. S. Bando, On the classification of three-dimensional compact Kaehler manifolds of nonnegative bisectional curvature. J. Differ. Geom. 19(2), 283–297 (1984)

    MathSciNet  MATH  Google Scholar 

  4. S. Bando, The K-energy map, almost Einstein Kähler metrics and an inequality of the Miyaoka-Yau type. Tohoku Math. J. 39, 231–235 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. W.P. Barth, K. Hulek, C. Peters, A. Van de Ven, in Compact Complex Surfaces, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete (Springer, Berlin, 2004)

    Google Scholar 

  6. C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Böhm, B. Wilking, Manifolds with positive curvature operators are space forms. Ann. Math. (2) 167(3), 1079–1097 (2008)

    Google Scholar 

  8. S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Brendle, R. Schoen, Classification of manifolds with weakly 1 ∕ 4-pinched curvatures. Acta Math. 200(1), 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Buchdahl, On compact Kähler surfaces. Ann. Inst. Fourier 49(1), 287–302 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Calabi, On Kähler manifolds with vanishing canonical class, in Algebraic Geometry and Topology. A Symposium in Honor of S. Lefschetz (Princeton University Press, Princeton, 1957), pp. 78–89

    Google Scholar 

  12. E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Calabi, Extremal Kähler metrics, in Seminar on Differential Geometry. Annals of Mathematics Studies, vol. 102, (Princeton University Press, Princeton, 1982), pp. 259–290

    Google Scholar 

  14. H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.D. Cao, On Harnack’s inequalities for the Kähler–Ricci flow. Invent. Math. 109(2), 247–263 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.-D. Cao, in Existence of Gradient Kähler–Ricci Solitons. Elliptic and Parabolic Methods in Geometry (Minneapolis, MN, 1994) (A.K. Peters, Wellesley, 1996), pp. 1–16

    Google Scholar 

  17. H.-D. Cao, The Kähler–Ricci flow on Fano manifolds, in An Introduction to the Kähler–Ricci Flow, ed. by S. Boucksom, P. Eyssidieux, V. Guedj. Lecture Notes in Mathematics (Springer, Heidelberg, 2013)

    Google Scholar 

  18. H.-D. Cao, M. Zhu, A note on compact Kähler–Ricci flow with positive bisectional curvature. Math. Res. Lett. 16(6), 935–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. H.-D. Cao, X.-P. Zhu, A complete proof of the Poincaré and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Chau, L.-F. Tam, On the complex structure of Kähler manifolds with nonnegative curvature. J. Differ. Geom. 73(3), 491–530 (2006)

    MathSciNet  MATH  Google Scholar 

  21. X. Chen, S. Sun, G. Tian, A note on Kähler–Ricci soliton. Int. Math. Res. Not. IMRN 2009(17), 3328–3336 (2009)

    MathSciNet  MATH  Google Scholar 

  22. X.X. Chen, G. Tian, Ricci flow on Kähler-Einstein manifolds. Duke Math. J. 131(1), 17–73 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Chen, B. Wang, The Kähler–Ricci flow on Fano manifolds (I). J. Eur. Math. Soc. (JEMS) 14(6), 2001–2038 (2012)

    Google Scholar 

  24. S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Cherrier, Équations de Monge-Ampère sur les variétés hermitiennes compactes. Bull. Sci. Math. (2) 111(4), 343–385 (1987)

    Google Scholar 

  26. B. Chow, The Ricci flow on the 2-sphere. J. Differ. Geom. 33(2), 325–334 (1991)

    MATH  Google Scholar 

  27. B. Chow, D. Knopf, in The Ricci Flow: An Introduction. Mathematical Surveys and Monographs, vol. 110 (American Mathematical Society, Providence, 2004), xii + 325 pp.

    Google Scholar 

  28. B. Chow, P. Lu, L. Ni, in Hamilton’s Ricci Flow. Graduate Studies in Mathematics, vol. 77 (American Mathematical Society/Science Press, Providence/New York, 2006), xxxvi + 608 pp.

    Google Scholar 

  29. A. Corti, A.-S. Kaloghiros, V. Lazić, Introduction to the Minimal Model Program and the existence of flips. Bull. Lond. Math. Soc. 43(3), 415–418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Debarre, in Higher-Dimensional Algebraic Geometry. Universitext (Springer, New York, 2001)

    Google Scholar 

  31. J.-P. Demailly, in L 2 Vanishing Theorems for Positive Line Bundles and Adjunction Theory. Transcendental Methods in Algebraic Geometry (Cetraro, 1994). Lecture Notes in Mathematics, vol. 1646 (Springer, Berlin, 1996), pp. 1–97

    Google Scholar 

  32. J.-P. Demailly, M. Paun, Numerical characterization of the Kähler cone of a compact Kähler manifold. Ann. Math. (2) 159(3), 1247–1274 (2004)

    Google Scholar 

  33. D.M. DeTurck, Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18 (1), 157–162 (1983)

    MathSciNet  MATH  Google Scholar 

  34. W.-Y. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.K. Donaldson, Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MathSciNet  MATH  Google Scholar 

  36. L.C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations. Comm. Pure Appl. Math. 35(3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Eyssidieux, V. Guedj, A. Zeriahi, Viscosity solutions to degenerate complex Monge-Ampère equations. Comm. Pure Appl. Math. 64, 1059–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Feldman, T. Ilmanen, D. Knopf, Rotationally symmetric shrinking and expanding gradient Kähler–Ricci solitons. J. Differ. Geom. 65(2), 169–209 (2003)

    MathSciNet  MATH  Google Scholar 

  39. T.-H.F. Fong, Kähler–Ricci flow on projective bundles over Kähler-Einstein manifolds (2011). Preprint (arXiv:1104.3924 [math.DG])

    Google Scholar 

  40. D. Gilbarg, N.S. Trudinger, in Elliptic Partial Differential Equations of Second Order, Reprint of the 1998 edn. Classics in Mathematics (Springer, Berlin, 2001), xiv + 517 pp.

    Google Scholar 

  41. M. Gill, Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom. 19(2), 277–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. P. Griffiths, J. Harris, in Principles of Algebraic Geometry. Pure and Applied Mathematics (Wiley-Interscience, New York, 1978)

    Google Scholar 

  43. M. Gross, V. Tosatti, Y. Zhang, Collapsing of abelian fibred Calabi-Yau manifolds. Duke Math. J. 162(3), 517–551 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. H.-L. Gu, A new proof of Mok’s generalized Frankel conjecture theorem. Proc. Am. Math. Soc. 137(3), 1063–1068 (2009)

    Article  MATH  Google Scholar 

  45. C.D. Hacon, J. McKernan, Existence of minimal models for varieties of log general type, II. J. Am. Math. Soc. 23(2), 469–490 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  47. R.S. Hamilton, Four-manifolds with positive curvature operator. J. Differ. Geom. 24(2), 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  48. R. Hamilton, in The Ricci Flow on Surfaces. Mathematics and General Relativity (Santa Cruz, CA, 1986). Contemporary Mathematics, vol. 71 (American Mathematical Society, Providence, 1988), pp. 237–262

    Google Scholar 

  49. R.S. Hamilton, in The Formation of Singularities in the Ricci Flow. Surveys in Differential Geometry, vol. II (Cambridge, MA, 1993) (International Press, Cambridge, 1995), pp. 7–136

    Google Scholar 

  50. R. Hartshorne, in Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977)

    Google Scholar 

  51. Y. Kawamata, K. Matsuda, K. Matsuki, in Introduction to the Minimal Model Problem. Algebraic Geometry (Sendai, 1985). Advanced Studies in Pure Mathematics, vol. 10 (North-Holland, Amsterdam, 1987), pp. 283–360

    Google Scholar 

  52. B. Kleiner, J. Lott, Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. Kobayashi, Einstein-Kähler V-metrics on open Satake V-surfaces with isolated quotient singularities. Math. Ann. 272(3), 385–398 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  54. K. Kodaira, J. Morrow, Complex Manifolds (Holt, Rinehart and Winston, Inc., New York, 1971), vii + 192 pp.

    Google Scholar 

  55. J. Kollár, S. Mori, in Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  56. S. Kołodziej, The complex Monge-Ampère equation. Acta Math. 180(1), 69–117 (1998); Math. Ann. 342(4), 773–787 (2008); Differ. Geom. 29, 665–683 (1989)

    Google Scholar 

  57. N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations. Izvestia Akad. Nauk. SSSR 46, 487–523 (1982). English translation in Math. USSR Izv. 20(3), 459–492 (1983)

    Google Scholar 

  58. G. La Nave, G. Tian, Soliton-type metrics and Kähler–Ricci flow on symplectic quotients (2009). Preprint (arXiv: 0903.2413 [math.DG])

    Google Scholar 

  59. A. Lamari, Le cône Kählérien d’une surface. J. Math. Pure Appl. 78, 249–263 (1999)

    MathSciNet  MATH  Google Scholar 

  60. R. Lazarsfeld, in Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48 (Springer, Berlin, 2004), xviii + 387 pp.

    Google Scholar 

  61. G.M. Lieberman, Second Order Parabolic Differential Equations (World Scientific, River Edge, 1996)

    Book  MATH  Google Scholar 

  62. T. Mabuchi, K-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

    Google Scholar 

  63. N. Mok, The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differ. Geom. 27(2), 179–214 (1988)

    MathSciNet  MATH  Google Scholar 

  64. J. Morgan, G. Tian, in Ricci Flow and the Poincaré Conjecture. Clay Mathematics Monographs, vol. 3 (American Mathematical Society/Clay Mathematics Institute, Providence/Cambridge, 2007)

    Google Scholar 

  65. J. Morgan, G. Tian, Completion of the proof of the geometrization conjecture (2008). Preprint (arXiv: 0809.4040 [math.DG])

    Google Scholar 

  66. O. Munteanu, G. Székelyhidi, On convergence of the Kähler–Ricci flow. Commun. Anal. Geom. 19(5), 887–903 (2011)

    Article  MATH  Google Scholar 

  67. L. Ni, A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature. J. Am. Math. Soc. 17(4), 909–946 (2004)

    Article  MATH  Google Scholar 

  68. L. Ni, B. Wilking, Manifolds with 1/4-pinched flag curvature. Geom. Funct. Anal. 20(2), 571–591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  69. G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002). Preprint (arXiv: math.DG/0211159)

    Google Scholar 

  70. G. Perelman, Ricci flow with surgery on three-manifolds (2003). Preprint (arXiv:math.DG/0303109)

    Google Scholar 

  71. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003). Preprint [arXiv:math.DG/0307245]

    Google Scholar 

  72. D.H. Phong, N. Sesum, J. Sturm, Multiplier ideal sheaves and the Kähler–Ricci flow. Comm. Anal. Geom. 15(3), 613–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  73. D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Kähler–Ricci flow with positive bisectional curvature. Invent. Math. 173(3), 651–665 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  74. D.H. Phong, J. Song, J. Sturm, B. Weinkove, The Kähler–Ricci flow and the \(\bar{\partial }\) operator on vector fields. J. Differ. Geom. 81(3), 631–647 (2009)

    MathSciNet  MATH  Google Scholar 

  75. D.H. Phong, J. Song, J. Sturm, B. Weinkove, On the convergence of the modified Kähler–Ricci flow and solitons. Comment. Math. Helv. 86(1), 91–112 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  76. D.H. Phong, J. Sturm, On the Kähler–Ricci flow on complex surfaces. Pure Appl. Math. Q. 1(2), Part 1, 405–413 (2005)

    Google Scholar 

  77. D.H. Phong, J. Sturm, On stability and the convergence of the Kähler–Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)

    MathSciNet  MATH  Google Scholar 

  78. D.H. Phong, J. Sturm, Lectures on stability and constant scalar curvature, in Handbook of Geometric Analysis, No. 3. Advanced Lectures in Mathematics (ALM), vol. 14 (International Press, Somerville, 2010), pp. 357–436

    Google Scholar 

  79. Y. Rubinstein, On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow. Trans. Am. Math. Soc. 361(11), 5839–5850 (2009)

    Article  MATH  Google Scholar 

  80. N. Šešum, Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005)

    Article  MATH  Google Scholar 

  81. N. Sesum, G. Tian, Bounding scalar curvature and diameter along the Kähler–Ricci flow (after Perelman). J. Inst. Math. Jussieu 7(3), 575–587 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. M. Sherman, B. Weinkove, Interior derivative estimates for the Kähler–Ricci flow. Pac. J. Math. 257(2), 491–501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  83. W.-X. Shi, Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(1), 223–301 (1989)

    MATH  Google Scholar 

  84. V.V. Shokurov, A nonvanishing theorem. Izv. Akad. Nauk SSSR Ser. Mat. 49(3), 635–651 (1985)

    MathSciNet  Google Scholar 

  85. Y.T. Siu, in Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics. DMV Seminar, vol. 8 (Birkhäuser, Basel, 1987)

    Google Scholar 

  86. Y.-T. Siu, Finite generation of canonical ring by analytic method. Sci. China Ser. A 51(4), 481–502 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  87. J. Song, G. Székelyhidi, B. Weinkove, The Kähler–Ricci flow on projective bundles. Int. Math. Res. Not. IMRN 2013(2), 243–257 (2013)

    Google Scholar 

  88. J. Song, G. Tian, The Kähler–Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  89. J. Song, G. Tian, Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25, 303–353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Song, G. Tian, The Kähler–Ricci flow through singularities (2009). Preprint [arXiv:0909.4898]

    Google Scholar 

  91. J. Song, G. Tian, Bounding scalar curvature for global solutions of the Kähler–Ricci flow (2011). Preprint

    Google Scholar 

  92. J. Song, B. Weinkove, The Kähler–Ricci flow on Hirzebruch surfaces. J. Reine Ange. Math. 659, 141–168 (2011)

    MathSciNet  MATH  Google Scholar 

  93. J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler–Ricci flow. Duke Math. J. 162(2), 367–415 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  94. J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler–Ricci flow II (2011). Preprint (arXiv:1102.1759 [math.DG])

    Google Scholar 

  95. J. Song, Y. Yuan, Metric flips with Calabi ansatz. Geom. Funct. Anal. 22(1), 240–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  96. J. Streets, G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. IMRN 2010(16), 3101–3133 (2010)

    MathSciNet  MATH  Google Scholar 

  97. G. Székelyhidi, The Kähler–Ricci flow and K-stability. Am. J. Math. 132(4), 1077–1090 (2010)

    Article  MATH  Google Scholar 

  98. G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 239–265 (1997)

    Article  Google Scholar 

  99. G. Tian, in Canonical Metrics in Kähler Geometry. Lectures in Mathematics ETH Zürich (Birkhäuser, Basel, 2000)

    Google Scholar 

  100. G. Tian, in Geometry and Nonlinear Analysis. Proceedings of the International Congress of Mathematicians, vol. I (Beijing, 2002) (Higher Ed. Press, Beijing, 2002), pp. 475–493

    Google Scholar 

  101. G. Tian, New results and problems on Kähler–Ricci flow. Géométrie différentielle, physique mathématique, mathématiques et société, II. Astérisque 322, 71–92 (2008)

    Google Scholar 

  102. G. Tian, Z. Zhang, On the Kähler–Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  103. G. Tian, X. Zhu, Convergence of Kähler–Ricci flow. J. Am. Math. Soc. 20(3), 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  104. V. Tosatti, Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  105. V. Tosatti, Adiabatic limits of Ricci-flat Kähler metrics. J. Differ. Geom. 84(2), 427–453 (2010)

    MathSciNet  MATH  Google Scholar 

  106. V. Tosatti, B. Weinkove, S.-T. Yau, Taming symplectic forms and the Calabi-Yau equation. Proc. Lond. Math. Soc. (3) 97(2), 401–424 (2008)

    Google Scholar 

  107. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  108. H. Tsuji, Generalized Bergmann metrics and invariance of plurigenera (1996). Preprint [arXiv:math.CV/9604228]

    Google Scholar 

  109. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  110. S.T. Yau, A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)

    Article  MATH  Google Scholar 

  111. S.-T. Yau, Open problems in geometry. Proc. Symp. Pure Math. 54, 1–28 (1993)

    Article  Google Scholar 

  112. X. Zhang, X. Zhang, Regularity estimates of solutions to complex Monge-Ampère equations on Hermitian manifolds. J. Funct. Anal. 260(7), 2004–2026 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  113. Z. Zhang, On degenerate Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. Art. ID 63640, 18 pp. (2006)

    Google Scholar 

  114. Z. Zhang, Scalar curvature bound for Kähler–Ricci flows over minimal manifolds of general type. Int. Math. Res. Not. IMRN 2009(20), 3901–3912 (2009)

    MATH  Google Scholar 

  115. Z. Zhang, Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow. Mich. Math. J. 59(2), 419–433 (2010)

    Article  MATH  Google Scholar 

  116. X. Zhu, Kähler–Ricci flow on a toric manifold with positive first Chern class (2007). Preprint [arXiv:math.DG/0703486]

    Google Scholar 

Download references

Acknowledgements

Jian Song is supported in by an NSF CAREER grant DMS-08-47524 and a Sloan Research Fellowship. Ben Weinkove is supported by the NSF grants DMS-08-48193 and DMS-11-05373.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Song, J., Weinkove, B. (2013). An Introduction to the Kähler–Ricci Flow. In: Boucksom, S., Eyssidieux, P., Guedj, V. (eds) An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol 2086. Springer, Cham. https://doi.org/10.1007/978-3-319-00819-6_3

Download citation

Publish with us

Policies and ethics