Advertisement

Introduction

  • Sébastien BoucksomEmail author
  • Philippe Eyssidieux
  • Vincent Guedj
Chapter
  • 2.3k Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 2086)

Abstract

This book is the first comprehensive reference on the Kähler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the Kähler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.

Keywords

Einstein Metrics Ricci Flow Fano Manifold Holomorphic Vector Field Minimal Model Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BBEGZ11]
    R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics and the Kähler–Ricci flow on log Fano varieties (2011). Preprint [arXiv.1111.7158v2]Google Scholar
  2. [Bes87]
    A. Besse, in Einstein Manifolds. Erg. der Math. 3. Folge, vol. 10 (Springer, Berlin, 1987)Google Scholar
  3. [BCHM10]
    C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BEGZ10]
    S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Monge-Ampère equations in big cohomology classes. Acta Math. 205, 199–262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [Cao85]
    H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Dem09]
    J.P. Demailly, Complex analytic and differential geometry (2009), OpenContent book available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
  7. [EGZ09]
    P. Eyssidieux, V. Guedj, A. Zeriahi, Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. [Ham82]
    R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)MathSciNetzbMATHGoogle Scholar
  9. [Hod41]
    W. Hodge, The Theory and Applications of Harmonic Integrals (Cambridge University Press, Cambridge, 1941)Google Scholar
  10. [Käh33]
    E. Kähler, Über eine bemerkenswerte Hermitesche metrik. Abh. Math. Semin. Univ. Hambg. 9, 173–186 (1933)CrossRefGoogle Scholar
  11. [Lef24]
    S. Lefschetz, L’Analysis Situs et la Géométrie Algébrique (Gauthier-Villars, Paris, 1924)zbMATHGoogle Scholar
  12. [ST09]
    J. Song, G. Tian, The Kähler–Ricci flow through singularities (2009). Preprint [arXiv:0909.4898]Google Scholar
  13. [ST12]
    J. Song, G. Tian, Canonical measures and Kähler–Ricci flow. J. Am. Math. Soc. 25, 303–353 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [SW10]
    J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler–Ricci flow (2010). Preprint (arXiv:1003.0718 [math.DG])Google Scholar
  15. [SzTo11]
    G. Székelyhidi, V. Tosatti, Regularity of weak solutions of a complex Monge-Ampère equation. Anal. PDE 4, 369–378 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Tian90]
    G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Weil57]
    A. Weil, Introduction à l’étude des variétés kählériennes (Hermann, Paris, 1957)Google Scholar
  18. [Yau78]
    S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Sébastien Boucksom
    • 1
    Email author
  • Philippe Eyssidieux
    • 2
  • Vincent Guedj
    • 3
  1. 1.Institut de Mathématiques de JussieuCNRS-Université Pierre et Marie CurieParisFrance
  2. 2.Institut Fourier and Institut Universitaire de FranceUniversité Joseph FourierSaint-Martin d’HèresFrance
  3. 3.Institut de Mathématiques de Toulouse and Institut Universitaire de FranceUniversité Paul SabatierToulouse Cedex 9France

Personalised recommendations