Skip to main content

Simulation of Q-Tensor Fields with Constant Orientational Order Parameter in the Theory of Uniaxial Nematic Liquid Crystals

  • Chapter
  • First Online:
Singular Phenomena and Scaling in Mathematical Models

Abstract

We propose a practical finite element method for the simulation of uniaxial nematic liquid crystals with a constant order parameter. A monotonicity result for Q-tensor fields is derived under the assumption that the underlying triangulation is weakly acute. Using this monotonicity argument we show the stability of a gradient flow type algorithm and prove the convergence outputs to discrete stable configurations as the stopping parameter of the algorithm tends to zero. Numerical experiments with singularities illustrate the performance of the algorithm. Furthermore, we examine numerically the difference of orientable and non-orientable stable configurations of liquid crystals in a planar two dimensional domain and on a curved surface. As an application, we examine tangential line fields on the torus and show that there exist orientable and non-orientable stable states with comparing Landau-de Gennes energy and regions with different tilts of the molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alouges, F.: Liquid crystal configurations: the numerical point of view. In: Chipot, M., Saint Jean Paulin, J., Shafrir, I. (eds.) Progress in Partial Differential Equations: The Metz Surveys, 3. Volume 314 of Pitman Research Notes in Mathematics Series, pp. 3–17. Longman Scientific & Technical, Harlow (1994)

    Google Scholar 

  2. Alouges, F.: A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34(5), 1708–1726 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alouges, F., Ghidaglia, J.M.: Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66(4), 411–447 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Ball, J.M., Zarnescu, A.: Orientability and energy minimization for liquid crystal models. Mol. Cryst. Liq. Cryst. 495, 573–585 (2008)

    Article  Google Scholar 

  5. Bartels, S.: Finite element approximation of harmonic maps between Surfaces. Habilitation thesis, Humboldt Universität zu Berlin, Berlin (2009)

    Google Scholar 

  6. Bartels, S.: Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comput. 79(271), 1263–1301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartels, S.: Finite element approximation of large bending isometries. Numerische Mathematik 124(3), 415–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bartels, S., Dolzmann, G., Nochetto, R., Raisch, A.: Finite element methods for director fields on flexible surfaces. Interfaces Free Bound. 14(2), 231–272 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 25001)]

    Google Scholar 

  10. de Gennes, P.-G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics, 2nd edn. Oxford University Press, New York (1995)

    Google Scholar 

  11. Jones, J.C.: 40.1: Invited paper: the zenithal bistable device: from concept to consumer. SID Symp. Dig. Tech. Pap. 38(1), 1347–1350 (2007)

    Google Scholar 

  12. Leslie, F.M.: Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1–81 (1979)

    Article  Google Scholar 

  13. Lin, F., Liu, C.: Static and dynamic theories of liquid crystals. J. Partial Differ. Equ. 14(4), 289–330 (2001)

    Google Scholar 

  14. Majumdar, A., Zarnescu, A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Persson, P.-O., Strang, G.: A simple mesh generator in Matlab. SIAM Rev. 46(2), 329–345 (2004). (Electronic)

    Google Scholar 

  16. Raisch, A.: Finite element methods for geometric problems. Phd thesis, Rheinische Friedrich-Wilhelms Universität Bonn, Bonn (2012)

    Google Scholar 

  17. Uche, C., Elston, S.J., Parry-Jones, L.A.: Microscopic observation of zenithal bistable switching in nematic devices with different surface relief structures. J. Phys. D Appl. Phys. 38(13), 2283 (2005)

    Article  Google Scholar 

  18. Virga, E.G.: Variational Theories for Liquid Crystals. Volume 8 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London (1994)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the DFG through the Collaborative Research Center (SFB) 611 Singular Phenomena and Scaling in Mathematical Models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Bartels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bartels, S., Raisch, A. (2014). Simulation of Q-Tensor Fields with Constant Orientational Order Parameter in the Theory of Uniaxial Nematic Liquid Crystals. In: Griebel, M. (eds) Singular Phenomena and Scaling in Mathematical Models. Springer, Cham. https://doi.org/10.1007/978-3-319-00786-1_17

Download citation

Publish with us

Policies and ethics