Skip to main content

Second Moment Analysis for Robin Boundary Value Problems on Random Domains

  • Chapter
  • First Online:
Singular Phenomena and Scaling in Mathematical Models

Abstract

We consider the numerical solution of Robin boundary value problems on random domains. The proposed method computes the mean and the variance of the random solution with leading order in the amplitude of the random boundary perturbation relative to an unperturbed, nominal domain. The variance is computed from the solution’s two-point correlation which satisfies a deterministic boundary value problem on the tensor product of the nominal domain. We solve this moderatly high-dimensional problem by either a low-rank approximation by means of the pivoted Cholesky decomposition or the combination technique. Both approaches are presented and compared by numerical experiments with respect to their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babuška, I., Nobile, F., Tempone, R.: Worst case scenario analysis for elliptic problems with uncertainty. Numer. Math. 101, 185–219 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Braess, D.: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  3. Bramble, J., Pasciak, J., Xu, J.: Parallel multilevel preconditioners. Math. Comput. 55, 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (1994)

    Google Scholar 

  5. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  6. Canuto, C., Kozubek, T.: A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107, 257–293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chernov, A., Schwab, C.: First order k-th moment finite element analysis of nonlinear operator equations with stochastic data. Math. Comput. 82, 1859–1888 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christiansen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2002)

    Google Scholar 

  9. Dahlke, S., Fornasier, M., Raasch, T., Stevenson, R., Werner, M.: Adaptive frame methods for elliptic operator equations. The steepest descent approach. IMA J. Numer. Math. 27, 717–740 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    Article  MathSciNet  Google Scholar 

  11. Deb, M.K., Babuška, I., Oden, J.T.: Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190, 6359–6372 (2001)

    Article  MATH  Google Scholar 

  12. Delfour, M., Zolesio, J.-P.: Shapes and Geometries. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  13. Frauenfelder, P., Schwab, C., Todor, R.A.: Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194, 205–228 (2004)

    Article  MathSciNet  Google Scholar 

  14. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements. A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  15. Grasedyck, L.: Existence and computation of a low Kronecker-rank approximant to the solution of a tensor system with tensor right-hand side. Computing 72, 247–265 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Griebel, M.: Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Comput. 15, 547–565 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Griebel, M.: Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart (1994)

    Book  MATH  Google Scholar 

  18. Griebel, M., Harbrecht, H.: Approximation of bivariate functions: singular value decomposition versus sparse grids. IMA J. Numer. Anal. (2013, to appear)

    Google Scholar 

  19. Griebel, M., Oswald, P.: On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math. 66, 449–463 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4, 171–206 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra. IMACS, pp. 263–281. Elsevier, North Holland (1992)

    Google Scholar 

  22. Harbrecht, H.: A finite element method for elliptic problems with stochastic input data. Appl. Numer. Math. 60, 227–244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harbrecht, H., Li, J.: First order second moment analysis for stochastic interface problems based on low-rank approximation. ESAIM Math. Model. Numer. Anal. (2013, to appear)

    Google Scholar 

  24. Harbrecht, H., Schneider, R.: Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269–270, 167–188 (2004)

    Article  MathSciNet  Google Scholar 

  25. Harbrecht, H., Stevenson, R.: Wavelets with patchwise cancellation properties. Math. Comput. 75, 1871–1889 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Harbrecht, H., Schneider, R., Schwab, C.: Sparse second moment analysis for elliptic problems in stochastic domains. Numer. Math. 109, 167–188 (2008)

    Article  MathSciNet  Google Scholar 

  27. Harbrecht, H., Schneider, R., Schwab, C.: Multilevel frames for sparse tensor product spaces. Numer. Math. 110, 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Harbrecht, H., Peters, M., Siebenmorgen, M.: Combination technique based k-th moment analysis of elliptic problems with random diffusion. J. Comput. Phys. 252, 128–141 (2013)

    Article  Google Scholar 

  29. Harbrecht, H., Peters, M., Schneider, R.: On the low-rank approximation by the pivoted Cholesky decomposition. Appl. Numer. Math. 62, 428–440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hegland, M., Garcke, J., Challis, V.: The combination technique and some generalisations. Linear Algebra Appl. 420, 249–275 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hiptmair, R., Li, J.: Shape derivatives in differential forms I. An intrinsic perspective. Ann. Mat. Pura Appl. (2012, to appear)

    Google Scholar 

  32. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mohan, P.S., Nair, P.B., Keane, A.J.: Stochastic projection schemes for deterministic linear elliptic partial differential equations on random domains. Int. J. Numer. Methods Eng. 85, 874–895 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nouy, A., Chevreuil, M., Safatly, E.: Fictitious domain method and separated representations for the solution of boundary value problems on uncertain parameterized domains. Comput. Methods Appl. Mech. Eng. 200, 3066–3082 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Oswald, P.: Multilevel Finite Element Approximation. Theory and Applications. Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart (1994)

    Book  MATH  Google Scholar 

  36. Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84, 327–350 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Protter, P.: Stochastic Integration and Differential Equations. A New Approach. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  38. Schwab, C., Todor, R.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95, 707–734 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schwab, C., Todor, R.: Karhunen-Loéve approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  41. Stevenson, R.: Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41, 1074–1100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stevenson, R.: Composite wavelet bases with extended stability and cancellation properties. SIAM J. Numer. Anal. 45, 133–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Tartakovsky, D.M., Xiu, D.: Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28, 1167–1185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Harbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harbrecht, H. (2014). Second Moment Analysis for Robin Boundary Value Problems on Random Domains. In: Griebel, M. (eds) Singular Phenomena and Scaling in Mathematical Models. Springer, Cham. https://doi.org/10.1007/978-3-319-00786-1_16

Download citation

Publish with us

Policies and ethics